Soybean-based polymers and composites

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Samy Madbouly ◽  
Sean Edlis ◽  
Nicolas Ionadi

Abstract Development and evaluation of new bio-based sustainable plastics to replace the petroleum-based materials in different industrial applications has both environmental and economic benefits. Bio-based polymers can be widely used in biomedical and agriculture applications due to their excellent biodegradability and biocompatibility. Soy protein is a natural material that can be isolated from soybean, which is a major agricultural crop in the U.S. The viability of soybean-based polymers and composites is questioned due to their high-water absorption and poor mechanical properties. There have been many environmentally friendly attempts to improve the properties of soybean polymers as soybeans and their extracts are widely available worldwide. Soy protein, hulls, and oils all find use in the development of different biodegradable polymers. While the development looks promising, there is still more work to do to make the soybean polymers useful and economically viable. Blending soy protein with other biodegradable polymers, such as polylactide (PLA) and polyurethane dispersion is a valid approach to improve the mechanical properties of soy protein and reduce its water sensitivity.

2011 ◽  
Vol 117-119 ◽  
pp. 1302-1305
Author(s):  
Ning Liao ◽  
Hong Zhi Cui

This research is one part of preliminary work for integrated structural-functional energy storage concrete by using porous artificial lightweight aggregate and phase change material. Lightweight aggregate concrete (LWAC) has been applied more and more extensively in recent years, but high water absorption of porous artificial lightweight aggregate (LWA) is inconvenient for LWAC production. In order to improve LWA application, in this paper, two aspects of lightweight aggregate (LWA) study have been carried out, namely, a) LWA surface modification. The effects of different concentration of surface modifier on water absorption of modified LWA were studied. b) Mechanical properties of lightweight aggregate concrete made of the unmodified and modified LWAs Through comparing the water absorption of unmodified and modified LWAs, it can be known that the surface modification for LWA can reduce the water absorption obviously. The three kinds of lightweight concrete possess nearly same strength at 7-day and, at 28-day, the strength of LWAC using 1:20 modified LWA is highest and that of LWAC using 1:5 modified LWA is lowest. 28 days compressive strength of LWAC using 1:20 modified LWA could be up to 46.1MPa.


2012 ◽  
Vol 193-194 ◽  
pp. 882-886
Author(s):  
Ying Huang ◽  
Zhi Heng Deng ◽  
Yue Feng Hu ◽  
Hui Xu

Recycled concrete is a kind of green and new material. With the application of construction, more research should be carried on its carbonization performance, not only focusing on its mechanical properties. Recycled concretes with different W/C (0.45、0.55 and 0.65) and recycled aggregate mix proportions (0、30%、50%、70%and 100%) are made to test their carbonation depth. The results show that water-cement ratio and recycled aggregate mix proportions have interactive influence on carbonization performance of recycled concrete. Influence of recycled aggregate on carbonation depth depends on two conflicting aspects: one is beneficial effect due to high water absorption; another is harmful effect caused by damage structure. A new model of RAC carbonation depth is suggested based on the study.


2018 ◽  
Vol 24 (8) ◽  
pp. 843-854 ◽  
Author(s):  
Weiguo Xu ◽  
Shujun Dong ◽  
Yuping Han ◽  
Shuqiang Li ◽  
Yang Liu

Hydrogels, as a class of materials for tissue engineering and drug delivery, have high water content and solid-like mechanical properties. Currently, hydrogels with an antibacterial function are a research hotspot in biomedical field. Many advanced antibacterial hydrogels have been developed, each possessing unique qualities, namely high water swellability, high oxygen permeability, improved biocompatibility, ease of loading and releasing drugs and structural diversity. In this article, an overview is provided on the preparation and applications of various antibacterial hydrogels. Furthermore, the prospects in biomedical researches and clinical applications are predicted.


Author(s):  
Hellen S. Santos ◽  
Karine L. Buarque da Silva ◽  
Ariel E. Zanini ◽  
Danilo S. Coelho ◽  
Marcelo Embiruçu ◽  
...  

Background: Brazilian bentonites have a low sodium concentration in their interlayer structure. This is a problem with most of the industrial applications that demand the characteristics of sodium bentonites. Objective: As a solution for this limitation, sodium carbonate is added to in natura clays, promoting ion exchange between other interlayer cations with sodium. Methods: A process was used based on the principle of Stokes’ Law (BR Patent 10 2013 016298). For this, we used four glass columns in series, in which a high water flow was considered to obtain purified clays. It was proposed as a simple, fast and economical method for sodium determination that was developed and applied in bentonites by flame photometry. The equipment calibration was performed with a NaCl standard solution in concentrations between 80 and 110 ppm. The bentonites in the suspension were separated by means of centrifugation, being thus analyzed by a flame photometer. Results: The samples were prepared according to the manufacturer’s specifications to contain detectable amounts of sodium by means of flame photometry. A resulting linear relationship between the average value readings versus sodium standard content solution (both in ppm) was obtained by the logarithmic scale, as expected. Conclusion: The procedure allowed to define a method that could be used in the sodification control process, thus making it possible to differentiate the sodium cation content in terms of the value of cation exchange capacity (CEC) from bentonite. X-ray analysis of in natura and the sodified clays showed nanostructural differences related to interlayer distance.


2020 ◽  
Vol 67 (2) ◽  
pp. 115-120
Author(s):  
Raisa A. Alekhina ◽  
Victoriya E. Slavkina ◽  
Yuliya A. Lopatina

The article presents options for recycling polymers. The use of biodegradable materials is promising. This is a special class of polymers that can decompose under aerobic or anaerobic conditions under the action of microorganisms or enzymes forming natural products such as carbon dioxide, nitrogen, water, biomass, and inorganic salts. (Research purpose) The research purpose is in reviewing biodegradable materials that can be used for the manufacture of products used in agriculture. (Materials and methods) The study are based on open information sources containing information about biodegradable materials. Research methods are collecting, studying and comparative analysis of information. (Results and discussion) The article presents the advantages and disadvantages of biodegradable materials, mechanical properties of the main groups of biodegradable polymers. The article provides a summary list of agricultural products that can be made from biodegradable polymer materials. It was found that products from the general group are widely used in agriculture. Authors have found that products from a special group can only be made from biodegradable polymers with a controlled decomposition period in the soil, their use contributes to increasing the productivity of crops. (Conclusions) It was found that biodegradable polymer materials, along with environmental safety, have mechanical properties that allow them producing products that do not carry significant loads during operation. We have shown that the creation of responsible products (machine parts) from biodegradable polymers requires an increase in their strength properties, which is achievable by creating composites based on them. It was found that the technological complexity of their manufacture and high cost are the limiting factors for the widespread use of biodegradable polymers at this stage.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1058
Author(s):  
Hikaru Okubo ◽  
Haruka Kaneyasu ◽  
Tetsuya Kimura ◽  
Patchiya Phanthong ◽  
Shigeru Yao

Each year, increasing amounts of plastic waste are generated, causing environmental pollution and resource loss. Recycling is a solution, but recycled plastics often have inferior mechanical properties to virgin plastics. However, studies have shown that holding polymers in the melt state before extrusion can restore the mechanical properties; thus, we propose a twin-screw extruder with a molten resin reservoir (MSR), a cavity between the screw zone and twin-screw extruder discharge, which retains molten polymer after mixing in the twin-screw zone, thus influencing the polymer properties. Re-extruded recycled polyethylene (RPE) pellets were produced, and the tensile properties and microstructure of virgin polyethylene (PE), unextruded RPE, and re-extruded RPE moldings prepared with and without the MSR were evaluated. Crucially, the elongation at break of the MSR-extruded RPE molding was seven times higher than that of the original RPE molding, and the Young’s modulus of the MSR-extruded RPE molding was comparable to that of the virgin PE molding. Both the MSR-extruded RPE and virgin PE moldings contained similar striped lamellae. Thus, MSR re-extrusion improved the mechanical performance of recycled polymers by optimizing the microstructure. The use of MSRs will facilitate the reuse of waste plastics as value-added materials having a wide range of industrial applications.


Gels ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 5
Author(s):  
Samuel Mandin ◽  
Samuel Moreau ◽  
Malika Talantikite ◽  
Bruno Novalès ◽  
Jean-Eudes Maigret ◽  
...  

Bio-based aerogels containing cellulose nanofibrils (CNFs) are promising materials due to the inherent physical properties of CNF. The high affinity of cellulose to plant hemicelluloses (xyloglucan, xylan, pectin) is also an opportunity to develop biomaterials with new properties. Here, we prepared aerogels from gelled dispersions of CNFs and xyloglucan (XG) at different ratios by using a freeze-casting procedure in unidirectional (UD) and non-directional (ND) manners. As showed by rheology analysis, CNF and CNF/XG dispersions behave as true gels. We investigated the impact of the freezing procedure and the gel’s composition on the microstructure and the water absorption properties. The introduction of XG greatly affects the microstructure of the aerogel from lamellar to cellular morphology. Bio-based aerogels showed high water absorption capacity with shape recovery after compression. The relation between morphology and aerogel compositions is discussed.


Author(s):  
A Miranda ◽  
M Leite ◽  
L Reis ◽  
E Copin ◽  
MF Vaz ◽  
...  

The aerospace, automotive, and marine industries are heavily reliant on sandwich panels with cellular material cores. Although honeycombs with hexagonal cells are the most commonly used geometries as cores, recently there have been new alternatives in the design of lightweight structures. The present work aims to evaluate the mechanical properties of metallic and polymeric honeycomb structures, with configurations recently proposed and different in-plane orientations, produced by additive and subtractive manufacturing processes. Structures with configurations such as regular hexagonal honeycomb (Hr), lotus (Lt), and hexagonal honeycomb with Plateau borders (Pt), with 0°, 45°, and 90° orientations were analyzed. To evaluate its properties, three-point bending tests were performed, both experimentally and by numerical modeling, by means of the finite element method. Honeycombs of two aluminum alloys and polylactic acid were fabricated. The structures produced in aluminum were obtained either by selective laser melting technology or by machining, while polylactic acid structures were obtained by material extrusion using fused filament fabrication. From the stress distribution analysis and the load–displacement curves, it was possible to evaluate the strength, stiffness, and absorbed energy of the structures. Failure modes were also analyzed for polylactic acid honeycombs. In general, a strong correlation was observed between numerical and experimental results. The results show that the stiffness and absorbed energy increase in the order, Hr, Pt, Lt, and with the orientation through the sequence, 45°, 90°, 0°. Thus, Lt structures with 0° orientation seem to be good alternatives to the traditional honeycombs used in sandwich composite panels for those industrial applications where low weight, high stiffness, and large energy-absorbing capacity are required.


Sign in / Sign up

Export Citation Format

Share Document