scholarly journals Indole-Acetic Acid Oxidase Enzyme Activity in Three Wheat Cultivars under Salt Stress Conditions at the Early Seedling Stage

2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Ravi Sharma
Soil Systems ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 26
Author(s):  
Rihab Djebaili ◽  
Marika Pellegrini ◽  
Massimiliano Rossi ◽  
Cinzia Forni ◽  
Maria Smati ◽  
...  

This study aimed to characterize the halotolerant capability, in vitro, of selected actinomycetes strains and to evaluate their competence in promoting halo stress tolerance in durum wheat in a greenhouse experiment. Fourteen isolates were tested for phosphate solubilization, indole acetic acid, hydrocyanic acid, and ammonia production under different salt concentrations (i.e., 0, 0.25, 0.5, 0.75, 1, 1.25, and 1.5 M NaCl). The presence of 1-aminocyclopropane-1-carboxylate deaminase activity was also investigated. Salinity tolerance was evaluated in durum wheat through plant growth and development parameters: shoot and root length, dry and ash-free dry weight, and the total chlorophyll content, as well as proline accumulation. In vitro assays have shown that the strains can solubilize inorganic phosphate and produce indole acetic acid, hydrocyanic acid, and ammonia under different salt concentrations. Most of the strains (86%) had 1-aminocyclopropane-1-carboxylate deaminase activity, with significant amounts of α-ketobutyric acid. In the greenhouse experiment, inoculation with actinomycetes strains improved the morpho-biochemical parameters of durum wheat plants, which also recorded significantly higher content of chlorophylls and proline than those uninoculated, both under normal and stressed conditions. Our results suggest that inoculation of halotolerant actinomycetes can mitigate the negative effects of salt stress and allow normal growth and development of durum wheat plants.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1227
Author(s):  
Ali Mahmoud El-Badri ◽  
Maria Batool ◽  
Ibrahim A. A. Mohamed ◽  
Zongkai Wang ◽  
Ahmed Khatab ◽  
...  

Measuring metabolite patterns and antioxidant ability is vital to understanding the physiological and molecular responses of plants under salinity. A morphological analysis of five rapeseed cultivars showed that Yangyou 9 and Zhongshuang 11 were the most salt-tolerant and -sensitive, respectively. In Yangyou 9, the reactive oxygen species (ROS) level and malondialdehyde (MDA) content were minimized by the activation of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) for scavenging of over-accumulated ROS under salinity stress. Furthermore, Yangyou 9 showed a significantly higher positive correlation with photosynthetic pigments, osmolyte accumulation, and an adjusted Na+/K+ ratio to improve salt tolerance compared to Zhongshuang 11. Out of 332 compounds identified in the metabolic profile, 225 metabolites were filtrated according to p < 0.05, and 47 metabolites responded to salt stress within tolerant and sensitive cultivars during the studied time, whereas 16 and 9 metabolic compounds accumulated during 12 and 24 h, respectively, in Yangyou 9 after being sown in salt treatment, including fatty acids, amino acids, and flavonoids. These metabolites are relevant to metabolic pathways (amino acid, sucrose, flavonoid metabolism, and tricarboxylic acid cycle (TCA), which accumulated as a response to salinity stress. Thus, Yangyou 9, as a tolerant cultivar, showed improved antioxidant enzyme activity and higher metabolite accumulation, which enhances its tolerance against salinity. This work aids in elucidating the essential cellular metabolic changes in response to salt stress in rapeseed cultivars during seed germination. Meanwhile, the identified metabolites can act as biomarkers to characterize plant performance in breeding programs under salt stress. This comprehensive study of the metabolomics and antioxidant activities of Brassica napus L. during the early seedling stage is of great reference value for plant breeders to develop salt-tolerant rapeseed cultivars.


2021 ◽  
Vol 72 (1) ◽  
pp. 1
Author(s):  
Elham Rezaei ◽  
Eslam Majidi Hervan ◽  
Amin Azadi ◽  
Alireza Etminan ◽  
Hossein Ramshini

Salinity and drought are major abiotic stresses affecting wheat (Triticum aestivum L.) production throughout the world, and discovery of loci for traits affecting yield under salinity may lead to the breeding for salt-tolerant plants. In the present study, 186 F10 recombinant inbred line (RIL) populations were evaluated under salt-stress conditions in order to identify main-effect and epistatic-effect quantitative trait loci (QTLs) for 15 traits in wheat during the germination and early-seedling stages. In total, 61 main-effect QTLs on 15 chromosomes and 21 epistatic interactions on 12 chromosomes were detected through composite interval mapping (CIM) and a mixed-model-based CIM method. Two major QTLs for primary-leaf fresh weight and coleoptile fresh weight were detected on chromosome (or linkage group) 5B2 and 2D, respectively, which contributed ~44% and 43% of the phenotypic variance. Additionally, 12 QTL clusters including different traits were detected on 1A1, 3A, 4A, 2B1, 3B, 5B1 and 2D1. Candidate genes were identified within QTL regions and gene ontology (GO) enrichment analysis was performed. In total, 9134 candidate genes were grouped into 274 GO terms (including 79 GO terms involved in the ‘biological process’ category). These genes directly or indirectly play a vital role such as lipid localisation, biological regulation, fatty acid biosynthetic process, cellular process, DNA conformation change, translational elongation, carbohydrate metabolic process, Fe ion homeostasis, hydrogen peroxide metabolic process, and pigment biosynthetic process at the germination and early-seedling stages under salt-stress conditions.


Author(s):  
S. Lakshmi ◽  
V. Ravichandran ◽  
L. Arul ◽  
K. Krishna Surendar

Hydroponics study was conducted to screen eight rice genotypes (CO 51, ADT 53, ADT 37, IR 64, CO 43, ASD 16, Pokkali; TRY 3) under salinity stress on early seedling stage. Two Saline treatments (75 and 100 mM NaCl) were given at 15 days old seedling; observations were recorded at 10 days after salt stress. Results showed that shoot length, root length, total fresh and dry weight, shoot and root fresh weight, shoot and root dry weight and root- shoot ratio were reduced under saline conditions compared to control. Na+ ion Concentration and Na+/ k+ ratio was higher in saline treatments than control. However, K+ ion absorption decreased with increasing salinity level. Electrolyte leakage and osmotic potential had increasing trend with increasing level of salinity. In this study, rice genotypes Pokkali, TRY 3 and CO 43 perform as tolerant; CO 51, ADT 53 and ASD 16 perform as moderately tolerant; ADT 37 is susceptible and IR 64 is highly susceptible. This type of study is required to develop salt tolerant genotypes at salt stress during seedling stage; to increase the growth and yield of rice there by satisfy the need of country’s requirement.


Author(s):  
Anita Mann ◽  
Gurpreet Kaur ◽  
Ashwani Kumar ◽  
Satish Kumar Sanwal ◽  
Jogendra Singh ◽  
...  

Screening of chickpea lines for salt tolerance through seed germination and early seedling growth is crucial for their evaluation. Seeds of 30 chickpea genotypes were germinated on a sand bed irrigated with saline (3, 6, 9, 12 dS/m) and control solutions upto 30 days. At the early seedling stage (25-30 days), germination percentage, chlorophyll content, proline, root length, shoot length and seedling dry weight were found to be affected due to salinity. Salt tolerance index (STI) for plant biomass maintained a significant correlation with chlorophyll, proline, shoot length, and root length, which indicated that these parameters could be used as selection criteria for screening chickpea genotypes against salt stress. Significant differences in shoot length, root length, and seedling dry weight in 30-day-old seedlings were observed among selected chickpea genotypes as well. From the overall observation of germination characterstics and early seedling growth, it is concluded that the chickpea genotypes, HC-1, HC-5, ICC 867, ICC 5003, H-10-41 showed better salt tolerance as compared to the available salt tolerant check variety.


1985 ◽  
Vol 31 (3) ◽  
pp. 206-210 ◽  
Author(s):  
Devender K. Jain ◽  
David G. Patriquin

Previous studies have shown that Azospirillum or its culture filtrates induce root hairs in wheat seedlings to branch; this phenomenon is influenced by the bacterial genome at the strain level and by the plant genome at the cultivar level. Strain Sp245 caused most branching of root hairs; between wheat cultivars frequency of branching increased in the following order: cv. Tobari, cv. Tonari, cv. BH1146, cv. Lagoa. Similarly, plant growth response to inoculation with Azospirillum, measured in mature plants, increased in the same order, suggesting that both phenomena (root hair branching and plant growth response) have a similar basis. In this study, the "branching substance" present in Azospirillum culture filtrate was found to be thermostable at 100 °C, removed by dialysis, present in the acidic nonpolar fraction of the cell-free extract, and co-chromatographed with authentic indole acetic acid on thin-layer chromatograms. Purified indole acetic acid caused branching of root hairs similar to that caused by the Azospirillum culture filtrates. Susceptibility of wheat cultivars to indole acetic acid induced branching increased in the order: cv. Tobari, cv. Tonari, cv. BH1146, cv. Lagoa. Of five strains examined, strain Sp245 produced the most indole acetic acid in culture in the presence of tryptophan. The presence of indole acetic acid was confirmed by gas chromatography – mass spectrometry.


Sign in / Sign up

Export Citation Format

Share Document