Fabrication of CMOS Compatible Sub-micron Nails for On-chip Phagocytosis

2007 ◽  
Vol 1009 ◽  
Author(s):  
Roeland Huys ◽  
Carmen Bartic ◽  
Bart Van Meerbergen ◽  
Dries Braeken ◽  
Josine Loo ◽  
...  

AbstractNeuronal research requires to efficiently perform long-time experiments on large-scale neuronal networks in a minimally invasive way. Such experiments imply stimulation and measurements of electrical activity on a large number of neurons. This could be achieved by on-chip integration of actuators, sensors and readout electronics with dimensions comparable to the sizes of neurons. Integration of biosensors at this scale creates new challenges: the processing of the sensors must be compatible with state-of-the art CMOS technology, the system must be biocompatible, and the down-scaled technology imposes restrictions on the applicable stimulation voltages and increases the electrical noise.Recently it has been demonstrated that biological phenomena can be exploited in order to achieve the best coupling between cells and sub-micron scale electronics. Engulfment of sub-micron nail structures by the cell membrane minimizes the distance between the sensor and the cell [1], [2].This paper presents two methods to produce nails with sizes from sub-micrometer to micrometer scales, on top of a CMOS chip. Prototype chips have been fabricated, and cells have been cultured to examine the in-vitro bio-compatibility of the chip.

Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 754 ◽  
Author(s):  
Jericó Bello-Bello ◽  
José Spinoso-Castillo ◽  
Samantha Arano-Avalos ◽  
Eduardo Martínez-Estrada ◽  
María Arellano-García ◽  
...  

Worldwide demands of Vanilla planifolia lead to finding new options to produce large-scale and contaminant-free crops. Particularly, the Mexican Government has classified Vanilla planifolia at risk and it subject to protection programs since wild species are in danger of extinction and no more than 30 clones have been found. Nanotechnology could help to solve both demands and genetic variability, but toxicological concerns must be solved. In this work, we present the first study of the cytotoxic and genotoxic effects promoted by AgNPs in Vanilla planifolia plantlets after a very long exposure time of six weeks. Our results show that Vanilla planifolia plantlets growth with doses of 25 and 50 mg/L is favored with a small decrease in the mitotic index. A dose-dependency in the frequency of cells with chromosomal aberrations and micronuclei was found. However, genotoxic effects could be considered as minimum due to with the highest concentration employed (200 mg/L), the total percentage of chromatic aberrations is lower than 5% with only three micronuclei in 3000 cells, despite the long-time exposure to AgNP. Therefore, 25 and 50 mg/L (1.5 and 3 mg/L of metallic silver) were identified as safe concentrations for Vanilla planifolia growth on in vitro conditions. Exposure of plantlets to AgNPs increase the polymorphism registered by inter-simple sequence repeat method (ISSR), which could be useful to promote the genetic variability of this species.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Monica Bollani ◽  
Marco Salvalaglio ◽  
Abdennacer Benali ◽  
Mohammed Bouabdellaoui ◽  
Meher Naffouti ◽  
...  

AbstractLarge-scale, defect-free, micro- and nano-circuits with controlled inter-connections represent the nexus between electronic and photonic components. However, their fabrication over large scales often requires demanding procedures that are hardly scalable. Here we synthesize arrays of parallel ultra-long (up to 0.75 mm), monocrystalline, silicon-based nano-wires and complex, connected circuits exploiting low-resolution etching and annealing of thin silicon films on insulator. Phase field simulations reveal that crystal faceting and stabilization of the wires against breaking is due to surface energy anisotropy. Wires splitting, inter-connections and direction are independently managed by engineering the dewetting fronts and exploiting the spontaneous formation of kinks. Finally, we fabricate field-effect transistors with state-of-the-art trans-conductance and electron mobility. Beyond the first experimental evidence of controlled dewetting of patches featuring a record aspect ratio of $$\sim$$~1/60000 and self-assembled $$\sim$$~mm long nano-wires, our method constitutes a distinct and promising approach for the deterministic implementation of atomically-smooth, mono-crystalline electronic and photonic circuits.


2016 ◽  
Vol 113 (12) ◽  
pp. 3179-3184 ◽  
Author(s):  
David B. Kolesky ◽  
Kimberly A. Homan ◽  
Mark A. Skylar-Scott ◽  
Jennifer A. Lewis

The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.


2021 ◽  
Author(s):  
Perçin Karakol ◽  
Emin Kapi

Free radicals are chemicals that play a role in the etiopathogenesis of ischemia–reperfusion injury. To prevent or reduce this damage, many protective or therapeutic antioxidants are used effectively in alternative medicine. These antioxidants include immunological or pharmacological agents, vitamins, food and herbal products, and spices. Herbs and spices have been used for a long time as coloring or preservative agents by adding to the content of foods, and at the same time to increase the nutritional value of foods. More recently, the nutritional effects of herbs and spices have become more perceived and the area of ​​interest for these products has increased. Concordantly, the biological contents of herbs and spices have begun to be studied in more detailed way at the cellular and molecular level. Sample plants are classified according to different chemical families, with the diet. Therefore, they have different levels of antioxidant capacity. These products also have potent anti-inflammatory, antihypertensive, glucoregulatory, antithrombotic, anticarcinogenic and so forth effects. These properties are used in the treatment of some chronic diseases. In this review, the antioxidant properties of various herbs and spices used to add flavor to foods or to extend their shelf life have been examined in the light of large-scale nutritional epidemiological studies, in vitro cellular/animal studies and clinical trials.


1916 ◽  
Vol 23 (2) ◽  
pp. 239-248 ◽  
Author(s):  
Peyton Rous ◽  
J. R. Turner

In order to determine the availability for functional uses of red cells kept in vitro by our methods, transfusion experiments have been carried out with rabbits by which a large part of their blood was replaced with kept rabbit cells suspended in Locke's solution. It has been found that erythrocytes preserved in mixtures of blood, sodium citrate, saccharose, and water for 14 days, and used to replace normal blood, will remain in circulation and function so well that the animal shows no disturbance, and the blood count, hemoglobin, and percentage of reticulated red cells remain unvaried. Cells kept for longer periods, though intact and apparently unchanged when transfused, soon leave the circulation. Animals in which this disappearance of cells is taking place on a large scale, remain healthy save for the progressing anemia. The experiments prove that, in the exsanguinated rabbit at least, transfusions of cells kept for a long time in vitro may be used to replace the blood lost, and that when the cells have been kept too long but are still intact they are disposed of without harm. The indications are that kept human cells could be profitably employed in the same way.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 447
Author(s):  
Johannes Möller ◽  
Ralf Pörtner

Techniques to provide in vitro tissue culture have undergone significant changes during the last decades, and current applications involve interactions of cells and organoids, three-dimensional cell co-cultures, and organ/body-on-chip tools. Efficient computer-aided and mathematical model-based methods are required for efficient and knowledge-driven characterization, optimization, and routine manufacturing of tissue culture systems. As an alternative to purely experimental-driven research, the usage of comprehensive mathematical models as a virtual in silico representation of the tissue culture, namely a digital twin, can be advantageous. Digital twins include the mechanistic of the biological system in the form of diverse mathematical models, which describe the interaction between tissue culture techniques and cell growth, metabolism, and the quality of the tissue. In this review, current concepts, expectations, and the state of the art of digital twins for tissue culture concepts will be highlighted. In general, DT’s can be applied along the full process chain and along the product life cycle. Due to the complexity, the focus of this review will be especially on the design, characterization, and operation of the tissue culture techniques.


2018 ◽  
Author(s):  
Han Yuan ◽  
Meghana Kshirsagar ◽  
Lee Zamparo ◽  
Yuheng Lu ◽  
Christina S. Leslie

AbstractDecoding transcription factor (TF) binding signals in genomic DNA is a fundamental problem. Here we present a prediction model called BindSpace that learns to embed DNA sequences and TF class/family labels into the same space. By training on binding data for hundreds of TFs and embedding over 1M DNA sequences, BindSpace achieves state-of-the-art multiclass binding prediction performance, in vitro and in vivo, and can distinguish signals of closely related TFs.


1995 ◽  
Vol 380 ◽  
Author(s):  
R. Fabian Pease

ABSTRACTThe drive to increasingly higher density ultra-large-scale-integration (ULSI) (of electronic circuits) is fuelled primarily by cost; on-chip interconnects are far cheaper than the less dense offchip interconnects. At the same time the escalating cost of an IC factory (‘fab’) is making headlines as it goes through $1B and a large part of this escalation is the cost of high performance lithography tools. The lithographic technology to go below 0.1μm will almost certainly be very different from an extension of today's optical projection and the cost of replacing today's technology will be enormous. A second drawback to higher density is the resistance of narrow interconnects. As a result some people have suggested that this situation is analogous to that of airliner speed which increased over a period of thirty years from about 100 mph to close to 600 mph but has not increased in the last 35 years. Still faster speed was technically possible, and hence was pursued by the military, but is uneconomical for most commercial use. Current technology might take us to 0.1μm which will probably be state of the art 10 years hence so technologies for replacing optical lithography e.g. scanned arrays of proximal probes should be researched now. Other challenges include how to achieve useful interconnect networks employing 50 nm features.


2017 ◽  
Author(s):  
Vinícius Dos Santos Livramento ◽  
José Luís Güntzel

The evolution of CMOS technology made possible integrated circuits with billions of transistors assembled into a single silicon chip, giving rise to the jargon Very-Large-Scale Integration (VLSI). VLSI circuits span a wide range class of applications, including Application Specific Circuits and Systems-On-Chip. The latter are responsible for fueling the consumer electronics market, especially in the segment of smartphones and tablets, which are responsible for pushing hardware performance requirements every new generation. The required clock frequency affects the performance of a VLSI circuit and induces timing constraints that must be properly handled by synthesis tools. This thesis focuses on techniques for timing closure of cellbased VLSI circuits, i.e. techniques able to iteratively reduce the number of timing violations until the synthesis of the synchronous digital system reaches the specified target frequency.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2533
Author(s):  
Johannes Karthäuser ◽  
Vladimirs Biziks ◽  
Carsten Mai ◽  
Holger Militz

Improving the environmental performance of resins in wood treatment by using renewable chemicals has been a topic of interest for a long time. At the same time, lignin, the second most abundant biomass on earth, is produced in large scale as a side product and mainly used energetically. The use of lignin in wood adhesives or for wood modification has received a lot of scientific attention. Despite this, there are only few lignin-derived wood products commercially available. This review provides a summary of the research on lignin application in wood adhesives, as well as for wood modification. The research on the use of uncleaved lignin and of cleavage products of lignin is reviewed. Finally, the current state of the art of commercialization of lignin-derived wood products is presented.


Sign in / Sign up

Export Citation Format

Share Document