Evaluation of Applied Materials' Rapid Thermal Processor Using SEMATECH Methodologies for 0.25 m Technology Thermal Applications-Part I

1996 ◽  
Vol 429 ◽  
Author(s):  
Terrence J. Riley ◽  
Arun K. Nanda ◽  
Gary Miner ◽  
Michael F. Pas ◽  
Sylvia Hossain-Pas ◽  
...  

AbstractUnder a joint development contract with Applied Materials (AMAT) and Texas Instruments (TI), SEMATECH undertook a project (Joint Development Project J100) with a goal of delivering a cost effective, technically advanced Rapid Thermal Processor (RTP). The RTP tool was specified to meet the present and future manufacturing needs of SEMATECH's member companies. The J100 results contained here will focus on the temperature and control performance of the AMAT RTP tool. The evaluation methodology included passive data collection (PDC) to check the tool stability, screening experiments to isolate the variable interaction and to define the process window, broad range and narrow range sensitivity studies to determine the sheet resistance dependence on thermal budget for small increments in temperature set point, perturbation experiments to determine localized control, and stability experiments to check for drift and process repeatability. The impact of wafer emissivity on source/drain rapidthermal annealing was evaluated by processing wafers with varying backside films. The PDC experiments demonstrated the tool to be stable. Screening experiments revealed the strong effect of temperature, followed by time, and time-temperature interaction on sheet resistance. Boron implanted (p+/n) wafers were found to be sensitive at a temperature of 1025 °C or less for a 10 second anneal whereas arsenic implanted wafers (n+/p) showed greater sensitivity at temperatures ranging from 1025 °C to 1100 °C for a 10 second anneal.

1996 ◽  
Vol 429 ◽  
Author(s):  
Arun K. Nanda ◽  
Terrence J. Riley ◽  
Gary Miner ◽  
Michael F. Pas ◽  
Sylvia Hossain-Pas

AbstractUnder a joint development contract with Applied Materials (AMAT) and Texas Instruments (TI), SEMATECH undertook a project (Joint Development Project J100) with a goal of delivering a cost effective, technically advanced Rapid Thermal Processor (RTP). The RTP tool was specified to meet the present and future manufacturing needs of SEMATECH's member companies. The J100 results contained here will focus on the temperature and control performance of the AMAT RTP tool. The J100 results on the temperature measurement and control performance of AMAT's RTP tool using bare backside monitor wafers were presented in part I. In actual manufacturing environments the backside conditions of wafers are not consistent which causes temperature variations during rapid thermal processing. In this experiment, boron monitor wafers with varying backside conditions were used to test the uniformity, repeatability, and stability of the tool. The wafer backside films were fabricated using predictions from emissivity models and were subsequently verified by experimental techniques. In addition, perturbation experiments utilizing boron and arsenic implanted wafers demonstrated a high degree of localized temperature control across the wafers. A 3-sigma temperature variation ranging from 3.0 °C (for wafers with similar backside films) to 6.0 °C (for wafers with varying backside films) was found for all wafers processed during this evaluation. The perturbation experiments, which included a forced temperature offset of two degrees at one of the wafer temperature sensors, resulted in a noticeable change in sheet resistance across the wafer.


2021 ◽  
Vol 13 (6) ◽  
pp. 3409
Author(s):  
Melita Rozman Cafuta

High quality artificial lighting of public places is one of the necessary functions of sustainable cities. It is much more than just providing sufficient light intensity with reduced energy consumption and low environmental impact. The solution to this challenge is not only technological, but also requires the consideration of the subjective approach, such as psychological, sociological, and aesthetic-functional. The article presents the SEC (Suitable for everyone, Environmentally-accepted, Cost-effective) methodology and model, which are placed in the context of sustainable city lighting. A holistic assessment approach of user environmental perception, priorities, and spatial responses is required to evaluate the impact of artificial night illumination. Lighting efficiency was expressed as the correspondence between environmental perception and spatial utilization during day and night. Ten sites with different urban background and illumination characteristics were selected. It was assumed that artificial night lighting influences the perception, priorities, and responsiveness of users. The validity of this argument was demonstrated at a relevant statistical level of p <0.05. The research results provided useful information about the current state, which is needed to prepare a sustainable lighting strategy, and could be compared between different or similar sites. Based on the obtained results, it can be concluded that the artificial lighting of urban open spaces is of high quality when the difference in the spatial perception and spatial utilization between day and night is as small as possible.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (09) ◽  
pp. 519-532 ◽  
Author(s):  
Mark Crisp ◽  
Richard Riehle

Polyaminopolyamide-epichlorohydrin (PAE) resins are the predominant commercial products used to manufacture wet-strengthened paper products for grades requiring wet-strength permanence. Since their development in the late 1950s, the first generation (G1) resins have proven to be one of the most cost-effective technologies available to provide wet strength to paper. Throughout the past three decades, regulatory directives and sustainability initiatives from various organizations have driven the development of cleaner and safer PAE resins and paper products. Early efforts in this area focused on improving worker safety and reducing the impact of PAE resins on the environment. These efforts led to the development of resins containing significantly reduced levels of 1,3-dichloro-2-propanol (1,3-DCP) and 3-monochloropropane-1,2-diol (3-MCPD), potentially carcinogenic byproducts formed during the manufacturing process of PAE resins. As the levels of these byproducts decreased, the environmental, health, and safety (EH&S) profile of PAE resins and paper products improved. Recent initiatives from major retailers are focusing on product ingredient transparency and quality, thus encouraging the development of safer product formulations while maintaining performance. PAE resin research over the past 20 years has been directed toward regulatory requirements to improve consumer safety and minimize exposure to potentially carcinogenic materials found in various paper products. One of the best known regulatory requirements is the recommendations of the German Federal Institute for Risk Assessment (BfR), which defines the levels of 1,3-DCP and 3-MCPD that can be extracted by water from various food contact grades of paper. These criteria led to the development of third generation (G3) products that contain very low levels of 1,3-DCP (typically <10 parts per million in the as-received/delivered resin). This paper outlines the PAE resin chemical contributors to adsorbable organic halogens and 3-MCPD in paper and provides recommendations for the use of each PAE resin product generation (G1, G1.5, G2, G2.5, and G3).


Author(s):  
Tochukwu Moses ◽  
David Heesom ◽  
David Oloke ◽  
Martin Crouch

The UK Construction Industry through its Government Construction Strategy has recently been mandated to implement Level 2 Building Information Modelling (BIM) on public sector projects. This move, along with other initiatives is key to driving a requirement for 25% cost reduction (establishing the most cost-effective means) on. Other key deliverables within the strategy include reduction in overall project time, early contractor involvement, improved sustainability and enhanced product quality. Collaboration and integrated project delivery is central to the level 2 implementation strategy yet the key protocols or standards relative to cost within BIM processes is not well defined. As offsite construction becomes more prolific within the UK construction sector, this construction approach coupled with BIM, particularly 5D automated quantification process, and early contractor involvement provides significant opportunities for the sector to meet government targets. Early contractor involvement is supported by both the industry and the successive Governments as a credible means to avoid and manage project risks, encourage innovation and value add, making cost and project time predictable, and improving outcomes. The contractor is seen as an expert in construction and could be counter intuitive to exclude such valuable expertise from the pre-construction phase especially with the BIM intent of äóÖbuild it twiceäó», once virtually and once physically. In particular when offsite construction is used, the contractoräó»s construction expertise should be leveraged for the virtual build in BIM-designed projects to ensure a fully streamlined process. Building in a layer of automated costing through 5D BIM will bring about a more robust method of quantification and can help to deliver the 25% reduction in overall cost of a project. Using a literature review and a case study, this paper will look into the benefits of Early Contractor Involvement (ECI) and the impact of 5D BIM on the offsite construction process.


2011 ◽  
Vol 14 (2) ◽  
Author(s):  
Thomas G Koch

Current estimates of obesity costs ignore the impact of future weight loss and gain, and may either over or underestimate economic consequences of weight loss. In light of this, I construct static and dynamic measures of medical costs associated with body mass index (BMI), to be balanced against the cost of one-time interventions. This study finds that ignoring the implications of weight loss and gain over time overstates the medical-cost savings of such interventions by an order of magnitude. When the relationship between spending and age is allowed to vary, weight-loss attempts appear to be cost-effective starting and ending with middle age. Some interventions recently proven to decrease weight may also be cost-effective.


2018 ◽  
Vol 32 (2) ◽  
pp. 103-119
Author(s):  
Colleen M. Boland ◽  
Chris E. Hogan ◽  
Marilyn F. Johnson

SYNOPSIS Mandatory existence disclosure rules require an organization to disclose a policy's existence, but not its content. We examine policy adoption frequencies in the year immediately after the IRS required mandatory existence disclosure by nonprofits of various governance policies. We also examine adoption frequencies in the year of the subsequent change from mandatory existence disclosure to a disclose-and-explain regime that required supplemental disclosures about the content and implementation of conflict of interest policies. Our results suggest that in areas where there is unclear regulatory authority, mandatory existence disclosure is an effective and low cost regulatory device for encouraging the adoption of policies desired by regulators, provided those policies are cost-effective for regulated firms to implement. In addition, we find that disclose-and-explain regulatory regimes provide stronger incentives for policy adoption than do mandatory existence disclosure regimes and also discourage “check the box” behavior. Future research should examine the impact of mandatory existence disclosure rules in the year that the regulation is implemented. Data Availability: Data are available from sources cited in the text.


Biomimetics ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 13
Author(s):  
Adam Bignold ◽  
Francisco Cruz ◽  
Richard Dazeley ◽  
Peter Vamplew ◽  
Cameron Foale

Interactive reinforcement learning methods utilise an external information source to evaluate decisions and accelerate learning. Previous work has shown that human advice could significantly improve learning agents’ performance. When evaluating reinforcement learning algorithms, it is common to repeat experiments as parameters are altered or to gain a sufficient sample size. In this regard, to require human interaction every time an experiment is restarted is undesirable, particularly when the expense in doing so can be considerable. Additionally, reusing the same people for the experiment introduces bias, as they will learn the behaviour of the agent and the dynamics of the environment. This paper presents a methodology for evaluating interactive reinforcement learning agents by employing simulated users. Simulated users allow human knowledge, bias, and interaction to be simulated. The use of simulated users allows the development and testing of reinforcement learning agents, and can provide indicative results of agent performance under defined human constraints. While simulated users are no replacement for actual humans, they do offer an affordable and fast alternative for evaluative assisted agents. We introduce a method for performing a preliminary evaluation utilising simulated users to show how performance changes depending on the type of user assisting the agent. Moreover, we describe how human interaction may be simulated, and present an experiment illustrating the applicability of simulating users in evaluating agent performance when assisted by different types of trainers. Experimental results show that the use of this methodology allows for greater insight into the performance of interactive reinforcement learning agents when advised by different users. The use of simulated users with varying characteristics allows for evaluation of the impact of those characteristics on the behaviour of the learning agent.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aiyan Guan ◽  
Inge Van Damme ◽  
Frank Devlieghere ◽  
Sarah Gabriël

AbstractAnisakidae, marine nematodes, are underrecognized fish-borne zoonotic parasites. Studies on factors that could trigger parasites to actively migrate out of the fish are very limited. The objective of this study was to assess the impact of different environmental conditions (temperature, CO2 and O2) on larval motility (in situ movement) and mobility (migration) in vitro. Larvae were collected by candling or enzymatic digestion from infected fish, identified morphologically and confirmed molecularly. Individual larvae were transferred to a semi-solid Phosphate Buffered Saline agar, and subjected to different temperatures (6 ℃, 12 ℃, 22 ℃, 37 ℃) at air conditions. Moreover, different combinations of CO2 and O2 with N2 as filler were tested, at both 6 °C and 12 °C. Video recordings of larvae were translated into scores for larval motility and mobility. Results showed that temperature had significant influence on larval movements, with the highest motility and mobility observed at 22 ℃ for Anisakis spp. larvae and 37 ℃ for Pseudoterranova spp. larvae. During the first 10 min, the median migration of Anisakis spp. larvae was 10 cm at 22 ℃, and the median migration of Pseudoterranova spp. larvae was 3 cm at 37 ℃. Larval mobility was not significantly different under the different CO2 or O2 conditions at 6 °C and 12 ℃. It was concluded that temperature significantly facilitated larval movement with the optimum temperature being different for Anisakis spp. and Pseudoterranova spp., while CO2 and O2 did not on the short term. This should be further validated in parasite-infected/spiked fish fillets.


2021 ◽  
pp. 109963622199387
Author(s):  
Mathilde Jean-St-Laurent ◽  
Marie-Laure Dano ◽  
Marie-Josée Potvin

The effect of extreme cold temperatures on the quasi-static indentation and the low velocity impact behavior of woven carbon/epoxy composite sandwich panels with Nomex honeycomb core was investigated. Impact tests were performed at room temperature, –70°C, and –150°C. Two sizes of hemispherical impactor were used combined to three different impactor masses. All the impact tests were performed at the same initial impact velocity. The effect of temperature on the impact behavior is investigated by studying the load history, load-displacement curves and transmitted energy as a function of time curves. Impact damage induced at various temperatures was studied using different non-destructive and destructive techniques. Globally, more damages are induced with impact temperature decreasing. The results also show that the effect of temperature on the impact behavior is function of the impactor size.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 264
Author(s):  
Wenhan Zhao ◽  
Jiancheng Li ◽  
Lijun Liu

The continuous-feeding Czochralski method is a cost-effective method to grow single silicon crystals. An inner crucible is used to prevent the un-melted silicon feedstock from transferring to the melt-crystal interface in this method. A series of global simulations were carried out to investigate the impact of the inner crucible on the oxygen impurity distributions at the melt-crystal interface. The results indicate that, the inner crucible plays a more important role in affecting the O concentration at the melt-crystal interface than the outer crucible. It can prevent the oxygen impurities from being transported from the outer crucible wall effectively. Meanwhile, it also introduces as a new source of oxygen impurity in the melt, likely resulting in a high oxygen concentration zone under the melt-crystal interface. We proposed to enlarge the inner crucible diameter so that the oxygen concentration at the melt-crystal interface can be controlled at low levels.


Sign in / Sign up

Export Citation Format

Share Document