The Small Angle Cleavage Technique: An Update

1997 ◽  
Vol 480 ◽  
Author(s):  
Scott D. Walck ◽  
John P. McCaffrey

AbstractThe Small Angle Cleavage Technique is a relatively simple and inexpensive method of producing superior cross sectional TEM specimens. For speed of preparation, it is unsurpassed. One limitation is that the technique does require the substrate material to cleave or fracture. For this reason, it has been applied almost exclusively to semiconductor materials. Recently, the technique has been extended to other substrates such as glass, silicon carbide, quartz, sapphire, and other hard materials. It is particularly well suited for rapidly examining coatings and thin films very soon after they are deposited. Several procedures have been added or modified to the original technique developed by McCaffrey to simplify the technique. The steps are presented in a detailed pictorial outline form. A method for mounting the cleaved samples utilizing a commercially available grid is presented. In addition, the advantages that the special geometry of the prepared samples have when mounted properly in a double-tilt holder are discussed with respect to the angular range of tilting experiments that are now possible in the TEM.

1998 ◽  
Vol 4 (S2) ◽  
pp. 866-867
Author(s):  
S. D. Walck ◽  
J. P. McCaffrey

The Small Angle Cleavage Technique (SACT) is a relatively simple and inexpensive method of producing superior cross sectional TEM specimens. For speed of preparation, it is unsurpassed; for example, ten samples can easily be prepared in about an hour from a typical material. It is particularly well suited for rapidly examining coatings and thin films very soon after they have been deposited. A major limitation of the technique is that it does require the substrate material to cleave or fracture. For this reason, it has been applied almost exclusively to semiconductor materials, but the technique has been extended quite successfully to other substrates such as glass, silicon carbide, quartz, sapphire, and other hard materials. Several procedures have been added or modified to the original technique developed by McCaffrey that makes it much easier to get started in using the technique. A detailed pictorial outline of the technique has been described elsewhere by the authors.


2004 ◽  
Vol 810 ◽  
Author(s):  
W. Skorupa ◽  
D. Panknin ◽  
M. Voelskow ◽  
W. Anwand ◽  
T. Gebel ◽  
...  

ABSTRACTThe use of flash lamp annealing for processing semiconductor materials is outlined. Specific applications include ultra-shallow junction formation and heteroepitaxial growth of improved quality thin films of cubic silicon carbide. It is demonstrated that flash lamp annealing holds great promise as a technique for fabricating novel devices.


1985 ◽  
Vol 46 ◽  
Author(s):  
C.H. Carter ◽  
J.A. Edmond ◽  
J.W. Palmour ◽  
J. Ryu ◽  
H.J. Kim ◽  
...  

AbstractTechniques have been developed at NCSU for fabricating cross-sectional transmission electron microscopy (XTEM) foils from monocrystalline beta silicon carbide thin films grown by chemical vapor deposition. The results of the TEM observations are utilized to discern the efficacy of the various processing parameters in terms of film quality and defect structure as well as oxidation, ion implantation and annealing procedures.


1990 ◽  
Vol 183 ◽  
Author(s):  
T. E. Mitchell ◽  
S. N. Basu ◽  
M. Nastasi ◽  
T. Roy

AbstractThin films of YBa2Cu3O7 have been prepared by evaporation of Cu, Y and BaF2 onto (001) SrTiO3, LaGaO3. and LaAlO3 and subsequent annealing. Their microstructures have been examined by HREM of cross-sectional specimens. Epitaxial (001) grains of YBa2Cu3O7 form near the substrate interface in thin films but (001) and (010) grains tend to nucleate as the film thickens. 90° grain boundaries are therefore common, as well as other defects such as small-angle boundaries, dislocations and stacking faults. HREM of the substrate/superconductor interface indicates regions of perfect epitaxy, highly distorted areas, amorphous regions and areas showing evidence of interdiffusion. The relationship of these microstructural features to critical current density is discussed.


Author(s):  
Karren L. More

Beta-SiC is an ideal candidate material for use in semiconductor device applications. Currently, monocrystalline β-SiC thin films are epitaxially grown on {100} Si substrates by chemical vapor deposition (CVD). These films, however, contain a high density of defects such as stacking faults, microtwins, and antiphase boundaries (APBs) as a result of the 20% lattice mismatch across the growth interface and an 8% difference in thermal expansion coefficients between Si and SiC. An ideal substrate material for the growth of β-SiC is α-SiC. Unfortunately, high purity, bulk α-SiC single crystals are very difficult to grow. The major source of SiC suitable for use as a substrate material is the random growth of {0001} 6H α-SiC crystals in an Acheson furnace used to make SiC grit for abrasive applications. To prepare clean, atomically smooth surfaces, the substrates are oxidized at 1473 K in flowing 02 for 1.5 h which removes ∽50 nm of the as-grown surface. The natural {0001} surface can terminate as either a Si (0001) layer or as a C (0001) layer.


Author(s):  
A. K. Rai ◽  
P. P. Pronko

Several techniques have been reported in the past to prepare cross(x)-sectional TEM specimen. These methods are applicable when the sample surface is uniform. Examples of samples having uniform surfaces are ion implanted samples, thin films deposited on substrates and epilayers grown on substrates. Once device structures are fabricated on the surfaces of appropriate materials these surfaces will no longer remain uniform. For samples with uniform surfaces it does not matter which part of the surface region remains in the thin sections of the x-sectional TEM specimen since it is similar everywhere. However, in order to study a specific region of a device employing x-sectional TEM, one has to make sure that the desired region is thinned. In the present work a simple way to obtain thin sections of desired device region is described.


Author(s):  
G. Lucadamo ◽  
K. Barmak ◽  
C. Michaelsen

The subject of reactive phase formation in multilayer thin films of varying periodicity has stimulated much research over the past few years. Recent studies have sought to understand the reactions that occur during the annealing of Ni/Al multilayers. Dark field imaging from transmission electron microscopy (TEM) studies in conjunction with in situ x-ray diffraction measurements, and calorimetry experiments (isothermal and constant heating rate), have yielded new insights into the sequence of phases that occur during annealing and the evolution of their microstructure.In this paper we report on reactive phase formation in sputter-deposited lNi:3Al multilayer thin films with a periodicity A (the combined thickness of an aluminum and nickel layer) from 2.5 to 320 nm. A cross-sectional TEM micrograph of an as-deposited film with a periodicity of 10 nm is shown in figure 1. This image shows diffraction contrast from the Ni grains and occasionally from the Al grains in their respective layers.


Author(s):  
Pamela F. Lloyd ◽  
Scott D. Walck

Pulsed laser deposition (PLD) is a novel technique for the deposition of tribological thin films. MoS2 is the archetypical solid lubricant material for aerospace applications. It provides a low coefficient of friction from cryogenic temperatures to about 350°C and can be used in ultra high vacuum environments. The TEM is ideally suited for studying the microstructural and tribo-chemical changes that occur during wear. The normal cross sectional TEM sample preparation method does not work well because the material’s lubricity causes the sandwich to separate. Walck et al. deposited MoS2 through a mesh mask which gave suitable results for as-deposited films, but the discontinuous nature of the film is unsuitable for wear-testing. To investigate wear-tested, room temperature (RT) PLD MoS2 films, the sample preparation technique of Heuer and Howitt was adapted.Two 300 run thick films were deposited on single crystal NaCl substrates. One was wear-tested on a ball-on-disk tribometer using a 30 gm load at 150 rpm for one minute, and subsequently coated with a heavy layer of evaporated gold.


1995 ◽  
Vol 403 ◽  
Author(s):  
T. S. Hayes ◽  
F. T. Ray ◽  
K. P. Trumble ◽  
E. P. Kvam

AbstractA refined thernodynamic analysis of the reaction between molen Al and SiC is presented. The calculations indicate much higher Si concentrations for saturation with respect to AkC 3 formation than previously reported. Preliminary microstructural studies confirm the formation of interfacial A14C3 for pure Al thin films on SiC reacted at 9000C. The implications of the calculations and experimental observations for the production of ohmic contacts to p-type SiC are discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshifumi Imajo ◽  
Takashi Suemasu ◽  
Kaoru Toko

AbstractPolycrystalline Ge thin films have attracted increasing attention because their hole mobilities exceed those of single-crystal Si wafers, while the process temperature is low. In this study, we investigate the strain effects on the crystal and electrical properties of polycrystalline Ge layers formed by solid-phase crystallization at 375 °C by modulating the substrate material. The strain of the Ge layers is in the range of approximately 0.5% (tensile) to -0.5% (compressive), which reflects both thermal expansion difference between Ge and substrate and phase transition of Ge from amorphous to crystalline. For both tensile and compressive strains, a large strain provides large crystal grains with sizes of approximately 10 μm owing to growth promotion. The potential barrier height of the grain boundary strongly depends on the strain and its direction. It is increased by tensile strain and decreased by compressive strain. These findings will be useful for the design of Ge-based thin-film devices on various materials for Internet-of-things technologies.


Sign in / Sign up

Export Citation Format

Share Document