scholarly journals ANTI-ODOUR TREATMENT ON 100% WOOL FABRIC USING COLORANTS FROM COFFEE GROUND RESIDUES

2019 ◽  
Vol 57 (3A) ◽  
pp. 77
Author(s):  
Bui Mai Huong ◽  
Le Thi Huong Thinh

Coffee ground residues is considered as biomass and organic wastes that can be used for further application due to their deodorant properties. The purpose of this study is applying anti-odor treatment on 100% wool fabric by bi-functional dyeing process with colorant extracted from coffee ground residues. The extraction was done with water at 100ºC with different extracting ratio. The knitted wool fabrics were IR dyed with extracting solutions at 80ºC, 90 min, then dried at 60ºC, 30 min. The effectiveness of treatment on wool fabric was determined by colour strength K/S and FT-IR spectra. The colour fastness after hand wash were tested by AATCC standard to confirm the treatment after laundering, exhibited good color fastness at grade 4-5. The anti-odor effect was also evaluated according to AATCC 2017 Methods for Odor Evaluation of Textiles and other Materials for fabric before and after laundering, which proved the efficiency of deodorization of treated fabric by coffee residues extraction, even with strong odor like onion

Coatings ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 78 ◽  
Author(s):  
Reza Assefi Pour ◽  
Jinxin He

Herein, the wool fabric was mordanted with alum, treated with microbial transglutaminase (m-TGase), and then dyed with madder. Different concentrations of alum and m-TGase were used to find out the optimum condition to achieve the best color after dyeing the wool fabrics with aqueous extract of madder. FT-IR spectroscopy and scanning electron microscopy (SEM) methods were applied to characterize the as-prepared samples. Contact angle measurements showed that the water uptake capability was increased in the case of the wool sample treated with alum and enzyme. Moreover, the samples were assessed for color strength (K/S) and color fastness. Our results showed that the optimal condition to get the highest color value was for the sample with 10% owf (of weight of fabric) alum and 5% owf m-TGase. Furthermore, it was found that there was a critical concentration for enzyme so that an increase in m-TGase amount would cause damage to the scales of fibers. The best condition of the dyeing process was discussed in this study, and also the proposed mechanism was presented. Indeed, treatment of wool with m-TGase led to a reduction in the amount of consumed alum, while investigations in color performances demonstrated the enhancement in color fastness, as well as color strength.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4091
Author(s):  
Zorana Kovačević ◽  
Ana Sutlović ◽  
Ana Matin ◽  
Sandra Bischof

In this study, the natural dye was extracted from Spartium junceum L. (SJL) flowers and applied on cellulose (cotton) and protein (wool) fabric. Fabrics were pre-mordant with alum prior to the dyeing process. Considering the global requirements on zero waste and green policy, the dyeing process was intended to be as much as possible environmentally friendly but still effective. Therefore, mordant concentration was optimized due to the reduction of the negative impact. The efficiency of the dyeing process was investigated by examination of fabrics’ color characteristics and colorfastness to washing properties. In this paper, we have proved that the extracted dye from Spartium junceum L. is an acidic dye (mordant dye) which is more applicable for the treatment of wool fabrics. In this paper, it was proved that phytochemicals responsible for coloring are part of the flavonoids group. The UV absorption spectra of extracted dye show 4 bands in the region of λmax 224, 268, 308 and 346 nm which are ascribed to bands characteristic for flavonoids. Wool fabric pre-mordant with 3% alum and dyed shows great chromatic (C*) properties where C* value is in a range from 47.76 for unwashed samples to 47.50 for samples after 5 washing cycles and color hue (h°) is in a range 82.13 for unwashed samples to 81.52 for samples after 5 washing cycles. The best result regarding the colorfastness properties is shown by the wool sample treated with 3% alum after 5 washing cycles (total difference in color (Delta E*) = 0.87). These results confirm that metal (Al) from alum mordant make strong chemical bonds with wool substrate and dye since Delta E* values decrease in comparison to Delta E* values of the cotton samples treated the same way. The results revealed it is possible to reduce the concentration of mordant up to 3% and obtain satisfactory results regarding the colorfastness. Nevertheless, future research will go in the direction of replacing synthetic mordant with a more environmentally friendly one.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 567
Author(s):  
Hong Yang ◽  
Mingyu Gao ◽  
Jinxin Wang ◽  
Hongbo Mu ◽  
Dawei Qi

In the absence of high-quality hardwood timber resources, we have gradually turned our attention from natural forests to planted fast-growing forests. However, fast-growing tree timber in general has defects such as low wood density, loose texture, and poor mechanical properties. Therefore, improving the performance of wood through efficient and rapid technological processes and increasing the utilization of inferior wood is a good way to extend the use of wood. Densification of wood increases the strength of low-density wood and extends the range of applications for wood and wood-derived products. In this paper, the effects of ultrasonic and vacuum pretreatment on the properties of high-performance wood were explored by combining sonication, vacuum impregnation, chemical softening, and thermomechanical treatments to densify the wood; then, the changes in the chemical composition, microstructure, and mechanical properties of poplar wood before and after treatment were analyzed comparatively by FT-IR, XRD, SEM, and mechanical tests. The results showed that with ultrasonic pretreatment and vacuum impregnation, the compression ratio of high-performance wood reached its highest level and the MOR and MOE reached their maximums. With the help of this method, fast-growing softwoods can be easily prepared into dense wood materials, and it is hoped that this new material can be applied in the fields of construction, aviation, and automobile manufacturing.


2020 ◽  
Vol 36 (05) ◽  
pp. 964-967
Author(s):  
Agrippina Wiraningtyan ◽  
Ruslan Ruslan ◽  
Putri Ayu Mutmainnah ◽  
Magfirah Perkasa

This study aims to extract dye and alginate from seaweed Sargassum sp. as a dye paste in the coloring of Bima woven fabric. The concentration of sodium alginate used was 0%; 1%; 3% and 5%. The results showed that the absorbance value of the dye extract from seaweed Sargassum sp at maximum λ = 203 nm obtained A = 3.899. The effect of variations in the concentration of sodium alginate in the dye paste was determined by comparing the FTIR absorption pattern of Bima woven fabrics. Based on the FTIR absorption pattern data, it was found that a mixture of dye and sodium alginate of 3% had a stronger intensity, namely the wave numbers 3448.72 cm-1 and 1635 cm-1; 2900.94 cm-1; 2337.72 cm-1; 1381.03 cm-1 and 1064.71 cm-1. The results of the morphological analysis showed significant differences in surface structure on Bima woven fabrics before and after the dyeing process.


2017 ◽  
Vol 25 (0) ◽  
pp. 102-105
Author(s):  
Silva Kreševič Vraz ◽  
Bojana Vončina

In the research work presented, fabric made of wool was grafted with β-cyclodextrine (β-CD) using 1, 2, 3, 4 butanetetracarboxlic acid (BTCA) as a polyfunctional reagent. To reduce the grafting curing temperature, which could damage the wool fabric if too high, cyanamide (CA) in combination with ammonium dihydrogen phosphat (ADHP) were used as catalysts. The presence of cedar oil applied onto textile materials was determined by ATR FT-IR spectroscopy, as well as estimation of the add-on of cedar oil with the gravimetric approach, respectively. Finally the reduction in moths after being exposed to wool treated with a separate treatment formulation i.e. β-CD, cedar oil, and β-CD in combination with cedar oil was assessed visually after different time periods. Results showed that the wool after being treated with β-CD in combination with cedar oil shows significantly prolonged moth oppression activity compared to the wool treated with cedar oil only.


2019 ◽  
Vol 7 (4.14) ◽  
pp. 168
Author(s):  
N Z. Nor Hashim ◽  
K Kassim ◽  
F H. Zaidon

Two N-substituted thiosemicarbazone derivatives namely as 2-(4-chlorobenzylidene)-N-phenylhydrazinecarbothioamide and 2-benzylidene-N-phenylhydrazinecarbothioamide (L1 and L2, respectively) have been tested as corrosion inhibitors on mild steel in 1 M HCl. The ligands were synthesized and investigated using potentiodynamic polarization (PD) and electrochemical impedance spectroscopy (EIS).  The obtained results indicated that inhibition efficiency, (IE, %) L1 increased with increasing inhibitor concentrations which behaved as a good corrosion inhibitor compared to L2. The synthesized ligands were successfully characterized by melting point, elemental analysis (C, H, N, and S), Fourier-transform infrared spectroscopy (FT-IR) and NMR (1H and 13C) spectroscopy. The excellent inhibition effectiveness for both compounds on mild steel before and after immersion in 1 M HCl solution containing 40 ppm of L1 and L2 were also verified by scanning electron microscope (SEM). Based on potentiodynamic polarization results, it can be concluded that all investigated compounds are mixed-type inhibitors and obey the Langmuir adsorption isotherm. 


2021 ◽  
Vol 7 (2) ◽  
pp. 188-195
Author(s):  
Nurhasni Nurhasni ◽  
Sariana Harahap ◽  
Ahmad Fathoni ◽  
Hendrawati Hendrawati

The ability of bagasse adsorbents to adsorb methylene blue without activation using 0.5 M H2SO4 solution was examined. Methylene blue is widely used in the textile industry because it produces bright colors, and the dyeing process is fast and easy. This research aims to determine the optimum adsorption conditions, namely the variations in contact time, dye concentration, adsorbent mass, and pH effect on methylene blue, which were carried out using the batch method. Furthermore, the adsorbents were characterized by FT-IR and SEM. The optimum state of the bagasse adsorbent to adsorb methylene blue dye has a mass of 0.5 grams, a contact time of 30 minutes, a concentration of 50 ppm, and a pH of 5. The character of the adsorbent after activation with H2SO4 was better than without activation. The highest adsorption efficiency of methylene blue dye in the batch method was 99.67%. The FTIR spectrum of the bagasse adsorbent showed OH, C-H, C=O, C=C, and C-O functional groups. The adsorption isotherm model for methylene blue dye follows the Langmuir isotherm since the graph obtained is linear with the correlation coefficient (R2) = 1, where the adsorbent has a homogeneous surface.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 752 ◽  
Author(s):  
Julia Cuthbert ◽  
Saigopalakrishna S. Yerneni ◽  
Mingkang Sun ◽  
Travis Fu ◽  
Krzysztof Matyjaszewski

Degradable polymers are crucial in order to reduce plastic environmental pollution and waste accumulation. In this paper, a natural product, tannic acid was modified to be used as a polymer star core. The tannic acid was modified with atom transfer radical polymerization (ATRP) initiators and characterized by 1H NMR, FT-IR, and XPS. Twenty-five arm polymer stars were prepared by photoinduced ATRP of poly(methyl methacrylate) (PMMA) or poly(oligo(ethylene oxide) methacrylate) (molar mass Mw = 300 g/mol) (P(OEO300MA)). The polymer stars were degraded by cleaving the polymer star arms attached to the core by phenolic esters under mild basic conditions. The stars were analyzed before and after degradation by gel permeation chromatography (GPC). Cytotoxicity assays were performed on the P(OEO300MA) stars and corresponding degraded polymers, and were found to be nontoxic at the concentrations tested.


Proceedings ◽  
2019 ◽  
Vol 41 (1) ◽  
pp. 60
Author(s):  
Zahra Rezaee ◽  
Faranak Manteghi

In this study, a terephthalate and pyrazine-based metal–organic framework (MOF) was prepared using the oxygen and nitrogen donor ligands through the hydrothermal method. In the MOF, cobalt and nickel ions were selected as metal nodes which are connected by terephthalate and pyrazine linkers. The as-prepared MOF was utilized as Cr adsorbent in water by an ultrasonic method. The MOF capacity towards chromium ion adsorption was obtained about 96% in 50 ppm initial concentration. In order to characterize and determine the morphology of the title MOF, the FT-IR and XRD methods were applied, while the chromium concentration before and after adsorption was determined by the ICP method.


2019 ◽  
Vol 138 (6) ◽  
pp. 4349-4358 ◽  
Author(s):  
K. Fila ◽  
M. Gargol ◽  
M. Goliszek ◽  
B. Podkościelna

Abstract The aim of this study was the synthesis of three different epoxy compounds based on naphthalene-2,7-diol (2,7-NAF.EP, 2,7-NAF.WEP, 2,7-NAF.P.EP) and then their cross-linking by triethylenetetramine (TETA). All epoxides were prepared by the reaction of naphthalene-2,7-diol with epichlorohydrin but under different conditions and with other catalysts. The structures of the obtained compounds before and after the cross-linking reactions were confirmed by the attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FT-IR). The ATR/FT-IR spectra of cross-linked compounds show disappearance of the C–O–C bands (about 915 cm−1) derived from the epoxy groups. DSC and TG/DTG measurements indicated that the obtained materials possess good thermal resistance; they are stable up to about 250 °C. The hardness of the cross-linked products was determined using the Shore D method. The highest value of hardness was obtained for the 2,7-NAF.EP-POL. Additionally, the UV–Vis absorption spectra of the obtained polymers were registered and evaluated.


Sign in / Sign up

Export Citation Format

Share Document