scholarly journals Effects of folic acid supplementation to basal diets of broilers on growth performance, slaughter performance, IGF2 gene expression and methylation

Author(s):  
Xiuling Li ◽  
Yujie Zhang ◽  
Wenqian Jing ◽  
Weiqi Tang ◽  
Jinyi Xing ◽  
...  

Folic acid (FA) is an important water-soluble vitamin and plays an important role as a cofactor and coenzyme in animal growth and development, and regulation of gene expression and methylation. A total of 270 female broiler chickens (1-day-old) were randomly allotted to three dietary treatments supplemented with 0 mg/kg (control group), 5 mg/kg, and 10 mg/kg FA in basal diets for 42 days, respectively. Each treatment had six replicate cages with 15 birds per cage. Dietary supplementation of 5 mg/kg FA significantly enhanced average body weight and average daily gain of 21-day-old broilers (P < 0.05), but significantly reduced subcutaneous fat thickness and widths of an intermuscular fat band of 42-day-old broilers by dietary FA treatments (P < 0.05). Also, a diet with 10 mg/kg FA supplementation significantly increased the relative heart weight of 42-day-old chickens (P < 0.05). Furthermore, dietary FA supplementation significantly improved the serum insulin-like growth factor 2 (IGF2) concentrations (P < 0.01) and IGF2 mRNA expression in the abdominal fat (P < 0.05), but no statistical differences were found in the methylation of IGF2 promoter (P > 0.05). The present study demonstrated that dietary FA supplementation may have positive effects on chicken growth through increased IGF2 gene expression.  

2021 ◽  
Vol 8 ◽  
Author(s):  
Yujie Zhang ◽  
Ningbo Zhang ◽  
Lin Liu ◽  
Yan Wang ◽  
Jinyi Xing ◽  
...  

Folic acid is a water-soluble B vitamin, and plays an important role in regulating gene expression and methylation. The liver is the major site of lipid biosynthesis in the chicken. Nevertheless, how gene expression and regulatory networks are affected by folic acid in liver of broilers are poorly understood. This paper conducted the RNA-seq technology on the liver of broilers under folic acid challenge investigation. First, 405 differentially expressed genes (DEGs), including 157 significantly upregulated and 248 downregulated, were detected between the control group (C) and the 5 mg folic acid group (M). Second, 68 upregulated DEGs and 142 downregulated DEGs were determined between C group and 10 mg folic acid group (H). Third, there were 165 upregulated genes and 179 downregulated genes between M and H groups. Of these DEGs, 903 DEGs were successfully annotated in the public databases. The functional classification based on GO and KEEGG showed that “general function prediction only” represented the largest functional classes, “cell cycle” (C vs. M; M vs. H), and “neuroactive ligand-receptor interaction” (C vs. H) were the highest unique sequences among three groups. SNP analysis indicated that numbers of C, M and H groups were 145,450, 146,131, and 123,004, respectively. Total new predicted alternative splicing events in C, M, and H groups were 9,521, 9,328, and 8,929, respectively. A protein-protein interaction (PPI) network was constructed, and the top 10 hub genes were evaluated among three groups. The results of real time PCR indicated that mRNA abundance of PPARγ and FAS in abdominal fat of M and H groups were reduced compared with the C group (P < 0.05). Ultramicroscopy results showed that folic acid could reduce lipid droplets in livers from chickens. Finally, contents of LPL, PPARγ, and FAS in abdominal fat were decreased with the folic acid supplmented diets (P < 0.01). These findings reveal the effects of folic acid supplemention on gene expression in liver of broilers, which can provide information for understanding the molecular mechanisms of folic acid regulating liver lipid metabolism.


2018 ◽  
Vol 40 (01) ◽  
pp. 62-70 ◽  
Author(s):  
Alexander Schenk ◽  
Walter Pulverer ◽  
Christine Koliamitra ◽  
Claus Bauer ◽  
Suzana Ilic ◽  
...  

AbstractPositive effects of exercise on cancer prevention and progression have been proposed to be mediated by stimulating natural killer (NK) cells. Because NK cell receptors are regulated by epigenetic modifications, we investigated whether acute aerobic exercise and training change promoter DNA methylation and gene expression of the activating KIR2DS4 and the inhibiting KIR3DL1 gene. Sixteen healthy women (50–60 years) performed a graded exercise test (GXT) and were randomized into either a passive control group or an intervention group performing a four-week endurance exercise intervention. Blood samples (pre-, post-GXT and post-training) were used for isolation of DNA/RNA of NK cells to assess DNA promoter methylation by targeted deep-amplicon sequencing and gene expression by qRT-PCR. Potential changes in NK cell subsets were determined by flow cytometry. Acute and chronic exercise did not provoke significant alterations of NK cell proportions. Promoter methylation decreased and gene expression increased for KIR2DS4 after acute exercise. A high gene expression correlated with a low methylation of CpGs that were altered by acute exercise. Chronic exercise resulted in a minor decrease of DNA methylation and did not alter gene expression. Acute exercise provokes epigenetic modifications, affecting the balance between the activating KIR2DS4 and the inhibiting KIR3DL1, with potential benefits on NK cell function.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2697
Author(s):  
Julia Brenmoehl ◽  
Daniela Ohde ◽  
Christina Walz ◽  
Martina Langhammer ◽  
Julia Schultz ◽  
...  

Physical inactivity is considered as one of the main causes of obesity in modern civilizations, and it has been demonstrated that resistance training programs can be used to reduce fat mass. The effects of voluntary exercise on energy metabolism are less clear in adipose tissue. Therefore, the effects of three different voluntary exercise programs on the control of energy metabolism in subcutaneous fat were tested in two different mouse lines. In a cross-over study design, male mice were kept for three or six weeks in the presence or absence of running wheels. For the experiment, mice with increased running capacity (DUhTP) were used and compared to controls (DUC). Body and organ weight, feed intake, and voluntary running wheel activity were recorded. In subcutaneous fat, gene expression of browning markers and mitochondrial energy metabolism were analyzed. Exercise increased heart weight in control mice (p < 0.05) but significantly decreased subcutaneous, epididymal, perinephric, and brown fat mass in both genetic groups (p < 0.05). Gene expression analysis revealed higher expression of browning markers and individual complex subunits present in the electron transport chain in subcutaneous fat of DUhTP mice compared to controls (DUC; p < 0.01), independent of physical activity. While in control mice, voluntary exercise had no effect on markers of mitochondrial fission or fusion, in DUhTP mice, reduced mitochondrial DNA, transcription factor Nrf1, fission- (Dnm1), and fusion-relevant transcripts (Mfn1 and 2) were observed in response to voluntary physical activity (p < 0.05). Our findings indicate that the superior running abilities in DUhTP mice, on one hand, are connected to elevated expression of genetic markers for browning and oxidative phosphorylation in subcutaneous fat. In subcutaneous fat from DUhTP but not in unselected control mice, we further demonstrate reduced expression of genes for mitochondrial fission and fusion in response to voluntary physical activity.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Takehiro Kamo

Introduction: Gut microbiota have developed a close relationship with human host during the co-evolutionary process for millions of years, and they play an essential role in the maintenance of host homeostasis. There is accumulating evidence that an imbalance in the gut microbial communities, referred to as dysbiosis, is associated with human pathologies including cardiovascular diseases. We and others have recently demonstrated that heart failure is associated with gut microbiota dysbiosis using 16S ribosomal RNA gene sequencing of fecal samples from patients with heart failure. This finding suggests a potential significance of gut microbiota in the pathophysiology of heart failure. However, the link between the gut microbiota and the heart remains largely unclear. Hypothesis: We hypothesized that manipulation of gut microbiota influences the structure of the heart. Methods: To determine the effects of gut microbiota depletion, cardiac structure and gene expression were evaluated in mice following treatment with orally administered broad-spectrum antibiotic cocktail. We subsequently explored the effects of administration of a single antibiotic agent on myocardial structure. Results: Antibiotic cocktail-treated mice showed a remarkable decrease in myocardial mass and cardiomyocyte size as compared with untreated mice (mean [±SD] ratio of heart weight to body weight, 3.87±0.25 mg/g in 44 antibiotic-treated mice vs. 4.38±0.21 mg/g in 45 untreated mice). The decrease in myocardial mass was associated with substantial changes in gene expression profiles in the heart, including the expression of genes encoding sarcomere proteins and extracellular matrix proteins. In addition, oral treatment with ampicillin alone led to a significant decrease in myocardial mass (mean [±SD] ratio of heart weight to body weight, 3.52±0.24 mg/g in 11 ampicillin-treated mice vs. 4.10±0.24 mg/g in 12 untreated mice). Conclusions: These results suggest that gut microbiota may modulate myocardial mass through the remote regulation of gene expression in the heart. Our study indicates an intimate relationship between the gut microbiota and the heart, and suggests the potential efficacy of manipulating gut microbiota in the prevention and treatment of heart failure.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Silvia I García ◽  
Ludmila S Peres Diaz ◽  
Maia Aisicovich ◽  
Mariano L Schuman ◽  
María S Landa

Cardiac TRH (cTRH) is overexpressed in the hypertrophied ventricle (LV) of the SHR. Additionally in vivo siRNA-TRH treatment induced downregulation of LV-TRH preventing cardiac hypertrophy and fibrosis demonstrating that TRH is involved in hypertrophic and fibrotic processes. Moreover, in a normal heart, the increase of LV TRH expression alone could induce structural changes where fibrosis and hypertrophy could be involved, independently of any other system alterations. Is well-known the cardiac hypertrophy/ fibrotic effects induced by AII, raising the question of whether specific LV cTRH inhibition might attenuates AII induced cardiac hypertrophy and fibrosis in mice. We challenged C57 mice with AII (osmotic pumps,14 days; 2 mg/kg) to induce cardiac hypertrophy vs saline. Groups were divided and , simultaneously to pump surgery, injected intracardiac with siRNA-TRH and siRNA-Con as its control. Body weight, water consume and SABP were measured daily. As expected, AII significantly increased SABP (p<0.05) in both groups treated , although cardiac hypertrophy (heart weight/body weight) was only evident in the group with the cardiac TRH system undamaged, suggesting that the cardiac TRH system function as a necessary mediator of the AII-induced hypertrophic effect. As hypothesized, we found an AII-induced increase of TRH (p<0.05) gene expression (real-t PCR) confirmed by immunofluorescence that was not observed in the group AII+siRNA-TRH demonstrating the specific siRNA treatment efficiency. Furthermore, AII significantly increase (p<0.05) BNP (hypertrophic marker), III collagen and TGFB (fibrosis markers) expressions only in the group with AII with the cardiac TRH system intact. On the contrary, the group with AII and the cTRH system inhibited, shows genes expressions similar to the saline control group. We confirmed these results by immunofluorescence. Similar fibrotic results were observed with NIH3T3 cell culture where we demonstrated that AII induced TRH gene expression (p<0.05) and its inhibition impedes AII-induced increase of TGFB and III/I collagens expressions telling us about the role of the cTRH in the AII fibrosis effects. Our results point out that the cardiac TRH is involved in the AII-induced hypertrophic and fibrotic effects.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4276-4276
Author(s):  
Kimberly J. Johnson ◽  
David A. Largaespada ◽  
Tucker W. LeBien ◽  
Raha Allaei ◽  
Julie A. Ross

Abstract Observational studies of childhood acute lymphoblastic leukemia (ALL) have generally supported a protective role for maternal intake of foods or vitamins rich in folic acid during pregnancy. Using C57BL/6J mice, we evaluated the effect of dietary folic acid intake in the perigestational period on surface marker and gene expression in B-lineage cells as a potential model to further elucidate the role of maternal diet in the etiology of childhood ALL. Thirty-six female mice were randomized to one of three folic-acid varied diets (low=0.3, control=2.0, high=8.0 mg/kg) one month prior to mating and maintained on the diet until pup weaning at three weeks. Reproductive characteristics and offspring red blood cell (RBC) folate were recorded, and bone marrow lymphocytes were isolated for surface marker characterization by flow cytometry. For gene expression analyses, CD19 positive B-lineage bone marrow cells were purified from three pups per dietary group using anti-CD19 microbeads. Gene expression levels were interrogated using the Agilent mouse whole genome microarray. No statistically significant differences were found among dietary groups with respect to mating success, litter size, estimated 21 day offspring weights, or the percentage of male offspring. However, there were significant differences among the 3 diets in offspring survival to the end of the experiment (39%, 84%, and 30% for the 0.3, 2.0, and 8.0 mg/kg groups, respectively). Pup RBC folate values were positively correlated with dietary folic acid dose with mean values of 428, 615, and 724 ng/ml, respectively. Mice were euthanized at 3 weeks. There was no significant difference in the expression of CD19, IgM, or kappa light chains on bone marrow lymphocytes in the offspring among dietary groups. ANOVA analysis, using Genedata Expressionist Pro software, showed differential expression of 267 genes using a Benjamini and Hochburg false discovery rate cutoff of 10%. Three main patterns of gene expression between pups of different dietary groups were identified through unsupervised hierarchical clustering analysis; 152 and 86 genes were up- and down-regulated, respectively, in both the high and the low folic acid groups relative to the control group. Twenty-seven genes showed increasing expression with increasing dietary folic acid dose. In conclusion, dietary folic acid given to dams prior to conception through weaning had a significant effect on offspring survival and gene expression. Additional analyses are underway to determine the relevance of genes found to be differentially expressed with respect to risk of B-cell lineage leukemias followed by validation of relevant gene candidates through quantitative RT-PCR. These data will be used to help inform future etiologic studies of childhood ALL.


2018 ◽  
Vol 7 (1) ◽  
pp. 55
Author(s):  
Arash Matin Ahmadi ◽  
Hessamodin Ghasemi ◽  
Sajad Nooshin ◽  
Zoofa Zayani ◽  
Shohreh Zare Karizi ◽  
...  

Background: Aberrant promoter methylation of CpG islands is an important mechanism for regulation of gene expression. Recent data suggest that epigenetic abnormalities may occur very early in lung carcinogenesis. Systemic methylation changes may be a diagnostic marker for tumor development or prognosis. In this study, the expression and methylation of KMT2D and IGF2 genes were investigated in the lung cancer tissue compared to the adjacent normal tissue.Methods: The status of methylation of KMT2D and IGF2 genes were investigated in 30 patients with NSCLC after genomic DNA extraction using bisulfite treatment and MS-HRM method and the expression of these genes were checked by Real-Time PCR method in same samples.Results: For KMT2D gene, the expression and methylation level increased in 46.6% and 6.67% (respectively) for tumor samples comparison with normal samples (P>0.05). Also, for IGF2 gene 50% tumor samples overexpressed and 50% tumor samples showed that reduced expression comparison with the normal samples (P>0.05). In addition, 96.66% of tumor tissues did not show any change in methylation level for IGF2 gene promoter (P>0.05).Conclusion: This study showed that expression and methylation level of KMT2D and IGF2 genes did not change in NSCLC tumor samples compared to normal samples. However, this study was designed as a pilot study, and further investigations are required to confirm our findings.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Qingqing Hao ◽  
Feifei Zhang ◽  
Yudan Wang ◽  
Yingxiao Li ◽  
Xiaoyong Qi

The Akt plays an important role in regulating cardiac growth, myocardial angiogenesis, and cell death in cardiac myocytes. However, there are few studies to focus on the responses of the Akt pathway to cardiac contractility modulation (CCM) in a chronic heart failure (HF) model. In this study, the effects of CCM on the treatment of HF in a rabbit model were investigated. Thirty six-month-old rabbits were randomly separated into control, HF, and CCM groups. The rabbits in HF and CCM groups were pressure uploaded, which can cause an aortic constriction. Then, CCM was gradually injected to the myocardium of rabbits in the CCM group, and this process lasted for four weeks with six hours per day. Rabbit body weight, heart weight, and heart beating rates were recorded during the experiment. To assess the CCM impacts, rabbit myocardial histology was examined as well. Additionally, western blot analysis was employed to measure the protein levels of Akt, FOXO3, Beclin, Pi3k, mTOR, GSK-3β, and TORC2 in the myocardial histology of rabbits. Results showed that the body and heart weight of rabbits decreased significantly after suffering HF when compared with those in the control group. However, they gradually recovered after CCM application. The CCM significantly decreased collagen volume fraction in myocardial histology of HF rabbits, indicating that CCM therapy attenuated myocardial fibrosis and collagen deposition. The levels of Akt, FOXO3, Beclin, mTOR, GSK-3β, and TORC2 were significantly downregulated, but Pi3k concentration was greatly upregulated after CCM utilization. Based on these findings, it was concluded that CCM could elicit positive effects on HF therapy, which was potentially due to the variation in the Pi3k/Akt signaling pathway.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2430
Author(s):  
Byung-Ki Park ◽  
Jun-Sang Ahn ◽  
Min-Ji Kim ◽  
Gi-Hwal Son ◽  
Sang-Hun Bong ◽  
...  

This study was conducted to investigate the effects of rumen-protected methionine and α-tocopherol (RPMT) on growth performance, carcass characteristics, and meat composition of late fattening Hanwoo steers in high-temperature seasons. Fourteen steers were randomly assigned to one of two diets; control (commercial concentrate) and treatment (commercial concentrate + 20 g of RPMT). Average daily gain was 34% higher in the treatment group than in the control group; however, there was no significant difference due to the small number under investigation. Feed conversion ratio was lower in the treatment group than in the control group (p < 0.05). Supplementation of RPMT had little effect on the fatty acid composition of longissimus muscle. Metmyoglobin in the longissimus muscle was significantly lower in treatment group compared to the control group at the ninth day of storage (p < 0.05). The redness of the longissimus muscle was higher in the treatment group than in the control group on day 9 of storage (p < 0.01). Thus, the results suggest that RPMT have positive effects on growth performance, and Commission Internationale de l’Eclairage color stability in the longissimus muscle of late fattening Hanwoo steers in high-temperature seasons.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yawei Fu ◽  
Xiaoxiao Liang ◽  
Donghua Li ◽  
Hu Gao ◽  
Yadong Wang ◽  
...  

Tryptophan (Trp) has received increasing attention in the maintenance of intestinal function. In this study, improved triploid crucian carp (ITCC) fed diets containing 6.35 g kg−1 Trp had higher average daily gain (ADG) and improved villus height (VH) and crypt depth (CD) in the intestine compared to the control group. To elucidate the potential mechanisms, we used RNA sequencing (RNA-seq) to investigate changes in the intestinal transcriptome and 16S rRNA gene sequencing to measure the intestinal microbiota in response to 6.35 g kg−1 Trp feeding in ITCC. Dietary Trp altered intestinal gene expression involved in nutrient transport and metabolism. Differentially expressed transcripts (DETs) were highly enriched in key pathways containing protein digestion and absorption and the AMPK signaling pathway. 16S rRNA sequencing showed that 6.35 g kg−1 Trp significantly increased the abundance of the genus Cetobacterium, and the Firmicutes/Bacteroidetes ratio at the phylum level (P &lt; 0.05). In addition, bacterial richness indices (Simpson index) significantly increased (P &lt; 0.05) community evenness in response to 6.35 g kg−1 Trp. In conclusion, appropriate dietary Trp improves the growth performance, and influences the intestinal flora of ITCC. This study might be helpful to guide the supply of dietary exogenous Trp in ITCC breeding.


Sign in / Sign up

Export Citation Format

Share Document