scholarly journals Biobased Hyperbranched Poly(ester)s of Precise Structure for the Release of Therapeutics

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Bob Howell ◽  
Tracy Zhang ◽  
Patrick Smith

Hyperbrached poly(ester)s derived from naturally-occurring biomonomers may serve as excellent platforms for the sustained-release of therapeutics. Those generated from glycerol are particularly attractive. Traditionally, the difference in reactivity of the hydroxyl groups of glycerol has precluded the formation of well-defined polymers at high monomer conversion without gelation. Using the Martin-Smith model to select appropriate monomer ratios (ratios of functional groups), polymerization may be carried out to high conversion while avoiding gelation and with the assurance of a single type of endgroup. Various agents may be attached via esterification, amide formation or other process. Sustained release of the active agent may be readily achieved by enzyme-catalyzed hydrolysis.

2020 ◽  
Vol 20 (5) ◽  
pp. 396-407 ◽  
Author(s):  
Zhaojun Sheng ◽  
Siyuan Ge ◽  
Min Gao ◽  
Rongchao Jian ◽  
Xiaole Chen ◽  
...  

Embelin is a naturally occurring para-benzoquinone isolated from Embelia ribes (Burm. f.) of the Myrsinaceae family, and contains two carbonyl groups, a methine group and two hydroxyl groups. With embelin as the lead compound, more than one hundred derivatives have been reported. Embelin is well known for its ability to antagonize the X-linked inhibitor of apoptosis protein (XIAP) with an IC50 value of 4.1 μM. The potential of embelin and its derivatives in the treatment of various cancers has been extensively studied. In addition, these compounds display a variety of other biological effects: antimicrobial, antioxidant, analgesic, anti-inflammatory, anxiolytic and antifertility activity. This paper reviews the recent progress in the synthesis and biological activity of embelin and its derivatives. Their cellular mechanisms of action and prospects in the research and development of new drugs are also discussed.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4215
Author(s):  
Hiromi Kimura ◽  
Go Fuseya ◽  
Satoshi Takeya ◽  
Akihiro Hachikubo

Knowledge of carbon isotope fractionation is needed in order to discuss the formation and dissociation of naturally occurring CO2 hydrates. We investigated carbon isotope fractionation during CO2 hydrate formation and measured the three-phase equilibria of 12CO2–H2O and 13CO2–H2O systems. From a crystal structure viewpoint, the difference in the Raman spectra of hydrate-bound 12CO2 and 13CO2 was revealed, although their unit cell size was similar. The δ13C of hydrate-bound CO2 was lower than that of the residual CO2 (1.0–1.5‰) in a formation temperature ranging between 226 K and 278 K. The results show that the small difference between equilibrium pressures of ~0.01 MPa in 12CO2 and 13CO2 hydrates causes carbon isotope fractionation of ~1‰. However, the difference between equilibrium pressures in the 12CO2–H2O and 13CO2–H2O systems was smaller than the standard uncertainties of measurement; more accurate pressure measurement is required for quantitative discussion.


Crystals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 62
Author(s):  
Xu Xu ◽  
Zeping Zhang ◽  
Wenjuan Yao

Graphene and graphene oxide (GO) usually have grain boundaries (GBs) in the process of synthesis and preparation. Here, we “attach” GBs into GO, a new molecular configuration i.e., polycrystalline graphene oxide (PGO) is proposed. This paper aims to provide an insight into the stability and mechanical properties of PGO by using the molecular dynamics method. For this purpose, the “bottom-up” multi-structure-spatial design performance of PGO and the physical mechanism associated with the spatial structure in mixed dimensions (combination of sp2 and sp3) were studied. Also, the effect of defect coupling (GBs and functional groups) on the mechanical properties was revealed. Our results demonstrate that the existence of the GBs reduces the mechanical properties of PGO and show an “induction” role during the tensile fracture process. The presence of functional groups converts in-plane sp2 carbon atoms into out-of-plane sp3 hybrid carbons, causing uneven stress distribution. Moreover, the mechanical characteristics of PGO are very sensitive to the oxygen content of functional groups, which decrease with the increase of oxygen content. The weakening degree of epoxy groups is slightly greater than that of hydroxyl groups. Finally, we find that the mechanical properties of PGO will fall to the lowest values due to the defect coupling amplification mechanism when the functional groups are distributed at GBs.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 474
Author(s):  
Ioannis S. Tsagkalias ◽  
Alexandra Loukidi ◽  
Stella Chatzimichailidou ◽  
Constantinos E. Salmas ◽  
Aris E. Giannakas ◽  
...  

The great concern about the use of hazardous additives in food packaging materials has shown the way to new bio-based materials, such as nanoclays incorporating bioactive essential oils (EO). One of the still unresolved issues is the proper incorporation of these materials into a polymeric matrix. The in situ polymerization seems to be a promising technique, not requiring high temperatures or toxic solvents. Therefore, in this study, the bulk radical polymerization of styrene was investigated in the presence of sodium montmorillonite (NaMMT) and organo-modified montmorillonite (orgMMT) including thyme (TO), oregano (OO), and basil (BO) essential oil. It was found that the hydroxyl groups present in the main ingredients of TO and OO may participate in side retardation reactions leading to lower polymerization rates (measured gravimetrically by the variation of monomer conversion with time) accompanied by higher polymer average molecular weight (measured via GPC). The use of BO did not seem to affect significantly the polymerization kinetics and polymer MWD. These results were verified from independent experiments using model compounds, thymol, carvacrol and estragol instead of the clays. Partially intercalated structures were revealed from XRD scans. The glass transition temperature (from DSC) and the thermal stability (from TGA) of the nanocomposites formed were slightly increased from 95 to 98 °C and from 435 to 445 °C, respectively. Finally, better dispersion was observed when orgMMT was added instead of NaMMT.


2018 ◽  
Vol 16 (1) ◽  
pp. 333-339
Author(s):  
Wanying Liu ◽  
Qing Huo ◽  
Yue Wang ◽  
Na Yu ◽  
Rongjian Shi

AbstractIn this study, we investigate the production of hypolipidemic agents in the form of Acipimox sustained-release tablets, using a wet pelleting process. The purpose of this research is to reduce the total intake time for patients and to lower the initial dose in such that the adverse reactions could be reduced. This study adopts the single-factor method and orthogonal experiments by using hydroxypropyl methyl cellulose (HPMC K15M) as the main sustained-release prescription composition. The final prescription is Acipimox 20%, HPMC K15M 26.67%, sodium carboxymethyl cellulose 30%, polyethylene glycol (PEG 6000) 1%, ethyl cellulose 16.6%, lactose 4.67% and magnesium stearate 1%. The dissolution of tablets reached 85.88% in 8 h. The difference in the weight, hardness and friability of the tables met the requirements in the Chinese Pharmacopoeia; to test the stability, a temperature and illumination accelerated test method was used, the results indicate that the Acipimox sustained-release tablets should be sealed and stored in a dark, cool area. A preliminary study on the tablets’ releasing mechanism showed that their release curve fitted the Higuchi model (the formula is Mt/M∞ = 31.137 t1/2–3.605 (R2 = 0.9903)). The Acipimox tablets’ release principle is dominated by the diffusion mechanism.


2011 ◽  
Vol 11 (2) ◽  
pp. 174-179 ◽  
Author(s):  
Hasri Hasri ◽  
Mudasir Mudasir ◽  
Nurul Hidayat Aprilita ◽  
Roto Roto

An application of Saccharomycess cereviceae biomass immobilized on chitosan (SC-Chi adsorbent) for Pb(II) ion removal was demonstrated. Adsorption experiment was conducted at various mass ratio of Saccharomycess cereviceae biomass to chitosan, contact time, pH of solution and concentration of cation. Total Pb(II) metal ion adsorbed was calculated from the difference of the amount of metal ion before and after adsorption which was measured by AAS. The results showed that optimum condition for adsorption of Pb(II) ion by the SC-Chi was achieved using mass ratio of Saccharomycess cereviceae to chitosan of 50% (w/w), pH solution of 7, contact time of 60 min and concentration of 25 mgL-1. The hydroxyl (-OH) and amino (-NH2) functional groups are believed to be responsible for the adsorption of Pb(II) ion by the adsorbent.


2021 ◽  
Author(s):  
Katerina S. Karadima ◽  
Vlasis G. Mavrantzas ◽  
Spyros N. Pandis

<p>Organic aerosols have been typically considered to be liquid, with equilibration between gas and aerosol phase assumed to be reached within seconds. However, Virtanen et al. (Nature, 2010) suggested that particles in amorphous solid state may also occur in the atmosphere implying that mass transfer between the atmospheric particulate and gas phases may be much slower than initially thought. Experimentally, the direct measurement of the diffusion coefficients of different compounds inside atmospheric organic particles is challenging. Thus, an indirect approach is usually employed, involving viscosity measurements and then estimation of diffusion coefficients via the Stokes-Einstein equation, according to which the diffusion coefficient is inversely proportional to the medium viscosity. However, the corresponding diffusion estimates are highly uncertain, especially for highly viscous aerosols which is the most important case. Molecular simulation methods, such as molecular dynamics (MD), can be an alternative method to determine directly the diffusion rates and the viscosity of the constituents of atmospheric organic particles. MD also provides detailed information of the exact dynamics and motion of the molecules, thus offering a deeper understanding on the underlying mechanisms and interactions.</p><p>In the present work, we use equilibrium and non-equilibrium MD simulations to estimate the viscosity and diffusion coefficients of bulk systems of representative organic compounds with different chemical structures and physicochemical characteristics. Hydrophilic and hydrophobic compounds representative of primary and secondary oxidized organic products and of primary organic compounds emitted by various sources are considered. The viscosity and self-diffusion coefficients calculated by our simulations are in good agreement with available experimentally measured values. Our results confirm that the presence of carboxyl and hydroxyl groups in the molecule increases the viscosity. The number of carboxyl and hydroxyl groups, in particular, seems to have a good effect on diffusivity (the diffusivity decreases as the number of these functional groups increase), and to a lesser extent on the viscosity. We also discuss the role of the hydrogen bonds formed between these functional groups.</p>


2018 ◽  
Vol 232 (3) ◽  
pp. 409-430 ◽  
Author(s):  
Sarah K. Sihvonen ◽  
Kelly A. Murphy ◽  
Nancy M. Washton ◽  
Muhammad Bilal Altaf ◽  
Karl T. Mueller ◽  
...  

AbstractMineral dust aerosol participates in heterogeneous chemistry in the atmosphere. In particular, the hydroxyl groups on the surface of aluminosilicate clay minerals are important for heterogeneous atmospheric processes. These functional groups may be altered by acidic processing during atmospheric transport. In this study, we exposed kaolinite (KGa-1b) and montmorillonite (STx-1b) to aqueous sulfuric acid and then rinsed the soluble reactants and products off in order to explore changes to functional groups on the mineral surface. To quantify the changes due to acid treatment of edge hydroxyl groups, we use19F magic angle spinning nuclear magnetic resonance spectroscopy and a probe molecule, 3,3,3-trifluoropropyldimethylchlorosilane. We find that the edge hydroxyl groups (OH) increase in both number and density with acid treatment. Chemical reactions in the atmosphere may be impacted by the increase in OH at the mineral edge.


1935 ◽  
Vol 13b (2) ◽  
pp. 61-77 ◽  
Author(s):  
Irene Koerber Buckland ◽  
Fritz Brauns ◽  
Harold Hibbert

The condensation of lignin with phenol by treatment of spruce wood meal with this solvent, using hydrogen chloride as catalyst, yields two chemically different phenol lignins, namely, an ether-insoluble and an ether-dioxane–soluble phenol lignin, in a ratio of approximately 3 to 1. Duplicate preparations gave the same yields of these two fractions, analyses of which gave concordant results, indicating homogeneity and constancy of composition.The analytical results of the ether-insoluble phenol lignin, and of its methylated and acetylated derivatives, can be interpreted on the basis of the Brauns–Hibbert formula for the "native" lignin unit. It is found, in this way, that the ether-insoluble phenol lignin contains three new free phenolic hydroxyl groups capable of methylation with diazomethane, while one phenol group has reacted with one hydroxyl group in the lignin unit with formation of a phenyl-oxygen ether linkage.The analytical results of the ether-dioxane–soluble phenol lignin indicate that a much larger quantity of phenol has condensed with the "native" lignin building unit than in the case of the ether-insoluble fraction. The exact number of phenol molecules reacting to form this condensation product has not been determined experimentally although calculations based on analytical data point to a number as large as 15 or 21.The phenol condensation products were obtained from Freudenberg and Willstätter lignins in nearly quantitative yield and found to differ from the directly extracted phenol lignin in that neither of them could be resolved into two fractions, thus indicating that some change had taken place in the native lignin during the isolation process. The Brauns-Hibbert formula can also be applied to interpret the experimental data in both cases. These lignins appear to contain the same fundamental building unit as the ether-insoluble phenol lignin fraction isolated directly from spruce wood, with the difference that the former probably have one additional hydroxyl group capable of acetylation and diazomethane-methylation.The correlation found to exist in the present investigation between the phenol condensation products from native spruce lignin, isolated Freudenberg lignin and Willstätter lignin is regarded as providing definite experimental evidence indicating the presence of a chemical unit common to various lignins. The phenol condensation products, it is considered, may serve as valuable reference compounds for proving the identity of lignins obtained from different sources and by use of different chemical reagents.


2012 ◽  
Vol 7 (7) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Natalia K. Utkina ◽  
Natalia D. Pokhilo

Antioxidant activities of minor pigments of sea urchins (1–5) and synthetic naphthazarins (7–13) were evaluated and compared with echinochrome A (6) using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) scavenging assays. Structure-activity relationships showed that the antioxidant activities of the tested compounds depended on the number and positions of hydroxyl groups. Compounds bearing 3 or 2 hydroxyl groups on a naphthazarin core (5,8-dihydroxy-1,4-naphthoquinone) were the most active in both assays. Echinochrome A (6) (IC50 7.0 μM) and its monomethyl ethers 7 (IC50 15.0 μM) and 8 (IC50 15.0 μM) displayed stronger activities than Trolox (IC50 16.0 μM) in the DPPH and ABTS assays (TE = 3.41, 2.35, and 2.35 mM, respectively). Compounds with either one or without hydroxyl groups on a naphthazarin core displayed activities significantly lower than Trolox in both assays. These results suggest that hydroxylated naphthazarin pigments of sea urchins have a potential use as natural antioxidants.


Sign in / Sign up

Export Citation Format

Share Document