scholarly journals Sex differences in the expression of lipid oxidation and glucose uptake genes in muscles of fasted mice

2019 ◽  
Vol 23 (1) ◽  
pp. 62-66
Author(s):  
N. A. Feofanova ◽  
T. V. Yakovleva ◽  
E. N. Makarova ◽  
N. M. Bazhan

Fasting has become increasingly popular for treatment and prevention of obesity. Sex differences in the mechanisms of adaptation to fasting may contribute to choosing a therapeutic strategy for correction of metabolic disorders. Hepatokine fibroblast growth factor 21 (FGF21) is involved in the adaptation to fasting. Muscles are assumed to be the main energy-consuming tissue in the body, as muscle metabolism plays an important role in the adaptation to nutritional deficit. However, there is still little information on sex differences in muscle and FGF21 physiological response to fasting. Our aim was to find out whether there were sex differences in hormonal regulation and the expression of genes controlling glucose and lipid metabolism in skeletal muscles in response to fasting. We estimated the effect of 24-hour fasting on the expression of genes involved in lipid (Ucp3, Cpt1) and carbohydrate (Slc2a4) metabolism in muscles and evaluated changes in body weight and blood plasma levels of glucose, insulin, free fatty acids (FFA), adiponectin, and FGF21 in male and female C57BL/6J mice. None of the genes studied (Ucp3, Cpt1 and Slc2a4) showed sex-related changes at mRNA levels in control groups, but females exposed to fasting demonstrated a significant increase in the expression of all genes as compared to control. Fasting significantly decreased body weight and glucose blood plasma levels in animals of both sexes but exerted no effect on the levels of insulin or FFA. The adiponectin and FGF21 levels were increased in response to fasting, the increase in females being significant. We were first to show sex dimorphism in muscle gene expression and FGF21 blood level in response to fasting. In females, the greater increase in FGF21 and adiponectin blood levels was positively associated with the greater upregulation of lipid oxidation and glucose uptake gene expression.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dominika Stygar ◽  
Tomasz Sawczyn ◽  
Agnieszka Dulska ◽  
Elżbieta Chełmecka ◽  
Łukasz Mielańczyk ◽  
...  

AbstractWe studied the long-term effect of ileal transposition (IT) metabolic surgery on the hepatokines: retinol-binding protein-4 (RBP4), α-2-HS-glycoprotein (aHSG/fetuin-A), and fibroblast growth factor 21 (FGF21), C-reactive protein (CRP) plasma levels, glucose metabolism, body weight, liver histology, as well as total lipids concentration in muscle, liver, and fat tissue of obese Zucker (Crl:ZUC(ORL)-Leprfa) rats. 14 adult males were randomly submitted either to IT or SHAM (control) surgery. Pre-operative hepatokines plasma levels were not significantly different in rats submitted to IT or SHAM protocol. Three months after the procedures the plasma levels of RBP4, aHSG, FGF21, and CRP were significantly lower in IT-operated animals when compared to SHAM-operated group. Three and 12 weeks after the IT and SHAM surgery, the AUCOGTT were significantly lower than AUCOGTT before the surgery. HOMA-IR was lower in rats after IT surgery in comparison to the SHAM-operated rats. Muscle and liver total lipids concentration was reduced after the IT procedure when compared to pre-IT conditions. IT had a significant reductive impact on the body weight in comparison to SHAM surgery in the 4th, 6th, 8th, and 10th week after the surgery. We conclude that IT reduces hepatokines’ plasma concentrations, muscle and liver total lipids concentration but not the inflammatory processes in the liver of Zucker (Crl:ZUC(ORL)-Leprfa) rats.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Dominika Stygar ◽  
Wojciech Pigłowski ◽  
Elżbieta Chełmecka ◽  
Bronisława Skrzep-Poloczek ◽  
Tomasz Sawczyn ◽  
...  

Purpose. To study the effect of duodenal-jejunal omega switch (DJOS) in combination with different dietary patterns on the retinol-binding protein (RBP4), fetuin-A, and fibroblast growth factor 21 (FGF21) plasma levels and their hepatic gene expressions in rats. Methods. A high-fat diet (HF) was given to 28 rats and 28 more were fed with a control diet (CD) for 2 months. After that, half of each group underwent either DJOS or SHAM surgery. For the next 2 months, half of the animals in each operation group were kept on the same diet as before and half of them had the diet changed. After 16 weeks of the experiment RBP4, fetuin-A, and FGF21 plasma levels as well as liver Rbp4, Ahsg, and Fgf21 gene expressions were measured. Results. DJOS had a reductive impact on plasma levels of RBP4, fetuin-A, and FGF21 and Rbp4, Ahsg, and Fgf21 relative gene expression in the liver when compared to SHAM. The HF/HF group expressed significantly higher RBP4 and fetuin-A plasma levels in comparison to the control. The HF diet used before and/or after surgery led to upregulation of Rbp4, Ahsg, and Fgf21 relative gene expression. The lowest levels of analyzed parameters were observed in the CD/CD group. Conclusions. The efficiency of DJOS surgery, measured by hepatokines’ plasma levels and their gene expressions in the liver, depends on the type of diet applied before and after surgery. Manipulation of dietary patterns can lead to marked improvements in metabolic profile after DJOS surgery.


2019 ◽  
Vol 28 (17) ◽  
pp. 2976-2986 ◽  
Author(s):  
Irfahan Kassam ◽  
Yang Wu ◽  
Jian Yang ◽  
Peter M Visscher ◽  
Allan F McRae

Abstract Despite extensive sex differences in human complex traits and disease, the male and female genomes differ only in the sex chromosomes. This implies that most sex-differentiated traits are the result of differences in the expression of genes that are common to both sexes. While sex differences in gene expression have been observed in a range of different tissues, the biological mechanisms for tissue-specific sex differences (TSSDs) in gene expression are not well understood. A total of 30 640 autosomal and 1021 X-linked transcripts were tested for heterogeneity in sex difference effect sizes in n = 617 individuals across 40 tissue types in Genotype–Tissue Expression (GTEx). This identified 65 autosomal and 66 X-linked TSSD transcripts (corresponding to unique genes) at a stringent significance threshold. Results for X-linked TSSD transcripts showed mainly concordant direction of sex differences across tissues and replicate previous findings. Autosomal TSSD transcripts had mainly discordant direction of sex differences across tissues. The top cis-expression quantitative trait loci (eQTLs) across tissues for autosomal TSSD transcripts are located a similar distance away from the nearest androgen and estrogen binding motifs and the nearest enhancer, as compared to cis-eQTLs for transcripts with stable sex differences in gene expression across tissue types. Enhancer regions that overlap top cis-eQTLs for TSSD transcripts, however, were found to be more dispersed across tissues. These observations suggest that androgen and estrogen regulatory elements in a cis region may play a common role in sex differences in gene expression, but TSSD in gene expression may additionally be due to causal variants located in tissue-specific enhancer regions.


2020 ◽  
Vol 7 ◽  
Author(s):  
Doaa Ibrahim ◽  
Alaa H. Sewid ◽  
Ahmed H. Arisha ◽  
Amir H. abd El-fattah ◽  
Adel M. Abdelaziz ◽  
...  

Phytogenic feed additives have been gaining considerable interest due to their ability to improve gut health and thereby performance of broiler chickens. The impact of Glycyrrhiza glabra (licorice) extract (GE) on expression of genes coding for tight junction proteins and gut protection and Campylobacter jejuni colonization in broilers has not been discussed until now. Thus, the current study assessed the effective dose of GE for maximum growth in broiler chickens, clear-cut molecular mechanisms related to integrity and health of intestine, and controlling C. jejuni colonization. Over a 35-day feeding period, a total of 500 Ross broiler chicks were allocated to five groups; the first group was fed a control diet without GE and the second group to the fifth group were fed a control diet with GE (0.25, 0.5, 1, and 2 g/kg of diet); each group comprised 100 chicks with 10 replicates (10 birds/replicate). Birds fed GE had an improved body weight gain and feed conversion ratio. Furthermore, the highest body weight gain was observed in the group that received 1 g/kg of GE (P < 0.05). The expression of genes coding for tight junction proteins [occludin and junctional adhesion molecules (JAM)] was upregulated in all groups supplemented with GE. Moreover, birds fed 1 g/kg of GE exhibited the maximum gene expression of occludin and JAM [0.2 and 0.3 fold change, respectively (P < 0.05)]. In relation to enterocyte protective genes [glucagon-like peptide (GLP-2) and fatty acid-binding protein (FABP-6)], use of GE significantly upregulated expression of GLP-2 gene with 0.8 fold change in 2 g/kg of the GE supplemented group (P < 0.05) while the expression of FABP-6 gene was not affected by GE supplementation (P > 0.05). After challenge with C. jejuni, the expression of mucin (MUC-2) gene was upregulated and the inflammatory markers such as Toll-like receptors (TLR-4) and interleukin (IL-1β) were downregulated with increasing level of supplemented GE (P < 0.05). The mean log10 count of C. jejuni in cecal samples after 7 days post-infection by culture and real-time qPCR was decreased in groups fed GE in a dose-dependent manner (P < 0.05). In addition, the highest reduction of C. jejuni count in cecal samples by culture and real-time qPCR was observed in the group fed 2 g/kg of GE (2.58 and 2.28 log10 CFU/g, respectively). Results from this study suggested that G. glabra extract (1 g/kg) improved growth performance of broiler chickens, as well as influenced the maintenance of intestinal integrity and reduced C. jejuni shedding from infected birds.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 646-646
Author(s):  
Alyssa Cull ◽  
Brooke Snetsinger ◽  
Michael J. Rauh

Abstract Introduction: The epigenetic regulator, TET2, catalyzes the conversion of methylcytosine to 5-hydroxymethylcytosine. Inactivating TET2 mutations are common in myeloid cancers such as chronic myelomonocytic leukemia (CMML). Although TET2 has been characterized in hematopoietic stem and progenitor cells, little is known about its role in disease-relevant monocytes/macrophages (MΦ). Previously, we found increased expression of M2 MΦ-associated arginase 1 (Arg1) in TET2 -mutant CMML and Tet2 -deficient MΦ. Therefore, our goals were to (1) characterize Tet family expression during normal murine MΦ differentiation and polarization, (2) determine the effect of Tet2 -deficiency on broader M1-M2 MΦ spectrum gene signatures. Methods: Hematopoietic-specific Tet2+/- and Tet2-/- knockout mice were generated by breeding floxed Tet2(f/f) with Vav-Cre mice (JAX), in accordance with Queen's University's Animal Care protocols. MΦs obtained by peritoneal lavage (PMΦ) and bone marrow differentiation (BMMΦ) from 9-13 week old Tet2-/- and 20-40 week old Tet2+/- mice were treated with an M1 stimulus (100ng/mL LPS) or an M2 stimulus (10ng/mL Il-4). Comparative gene expression analysis was conducted using a 591 candidate gene Mouse Immunology Gene Expression CodeSet (NanoString). Blood plasma samples collected from Tet2f/f and Tet2-/- mice were sent for cytokine/chemokine array analysis (Eve Technologies). Results: A survey of Tet mRNA expression in wild-type C57BL/6 mouse whole BM showed that Tet1 was most abundantly expressed, with Tet2 and Tet3 having relative abundances of 0.56±0.05 and 0.09±0.01 respectively. In contrast, Tet2 expression peaked, while Tet1 expression diminished during BMMΦ differentiation. Suggesting a functional role, loss of murine Tet2 is associated with skewed myelomonocytic differentiation (i.e. CMML phenotype). In terminally-differentiated MΦ, Tet2 was the most abundantly expressed Tet gene, suggesting MΦ-specific functions. Consistent with this, following a 3-hour LPS stimulation, Tet2 mRNA levels increased 2- to 4-fold, whereas Il-4 failed to induce a similar increase in expression. Overall, our results suggested that Tet2 plays a role in M1 but not M2 macrophage polarization. Based on these findings, we hypothesized that loss of Tet2 would lead to M1 program dysregulation. PMΦs were obtained from Tet2f/f and Tet2-/- mice (n=2/ genotype) and RNA was harvested from untreated and LPS- or Il-4-treated cells. Pools of these RNA samples were then screened using Nanostring. Overall, M1-associated markers such as Stat1, Socs1, Nfkbiz, Il-6, Il-27, Il-12, Il-1 and Ccl2 were markedly increased by 2- to 50-fold in resting Tet2-/- PMΦs compared to matched Tet2f/f samples. These same M1 genes demonstrated a reduced ability to be induced by LPS treatment. We also found that while the expression of most M2 genes was similar in controls versus knockouts, Il-1rn and Arg1 were overexpressed, and Marco was decreased. This suggested that Tet2 -deficient MΦs possess a complex phenotype with a potential homeostatic response to M1 gene dysregulation. We have previously seen variable upregulation of Arg1 in mouse BMMΦs and PMΦs. Approximately 60% of Tet2-deficient mice (+/- and -/-) (n=20) tested for MΦ Arg1 mRNA expression demonstrated 2- to 90-fold increases in Arg1 compared to pooled Tet2f/f controls (n=5). We were interested in investigating the underlying mechanisms contributing to this dramatic increase in expression. Using Nanostring on pooled Tet2-deficient PMΦs with low (n=7) or high (n=8) Arg1 mRNA expression, we were able to identify genes whose expression significantly correlated with Arg1 overexpression: Cxcl3 (p=0.0329), Ppbp (p=0.0015), Cxcl1 (p=0.0104) and Ccl6 (p=0.0185). Of note, Ppbp was the most divergently expressed gene (46-fold difference) in Arg1 low vs Arg1 high macrophages, followed by Arg1 itself (14-fold difference). Suggesting a further environmental influence, blood plasma levels of TNF-alpha, Il-1b, Il-4, Il-10, Il-12 and Il-13 were significantly elevated in mice with high PMΦ Arg1 mRNA expression (n=5) compared to those with low expression (n=10). Conclusions: Tet2 is a novel regulator of murine MΦ, induced during MΦ differentiation and M1-polarization. Tet2 loss leads to complex disruption of the M1-M2 spectrum. We are currently exploring whether human TET2 mutations contribute to the abnormal immune environment of myeloid cancers. Disclosures No relevant conflicts of interest to declare.


2007 ◽  
Vol 189 (11) ◽  
pp. 4275-4289 ◽  
Author(s):  
Stephan Fuchs ◽  
Jan Pané-Farré ◽  
Christian Kohler ◽  
Michael Hecker ◽  
Susanne Engelmann

ABSTRACT An investigation of gene expression in Staphylococcus aureus after a switch from aerobic to anaerobic growth was initiated by using the proteomic and transcriptomic approaches. In the absence of external electron acceptors like oxygen or nitrate, an induction of glycolytic enzymes was observed. At the same time the amount of tricarboxylic acid cycle enzymes was very low. NAD is regenerated by mixed acid and butanediol fermentation, as indicated by an elevated synthesis level of fermentation enzymes like lactate dehydrogenases (Ldh1 and Ldh2), alcohol dehydrogenases (AdhE and Adh), α-acetolactate decarboxylase (BudA1), acetolactate synthase (BudB), and acetoin reductase (SACOL0111) as well as an accumulation of fermentation products as lactate and acetate. Moreover, the transcription of genes possibly involved in secretion of lactate (SACOL2363) and formate (SACOL0301) was found to be induced. The formation of acetyl-coenzyme A or acetyl-phosphate might be catalyzed by pyruvate formate lyase, whose synthesis was found to be strongly induced as well. Although nitrate was not present, the expression of genes related to nitrate respiration (NarH, NarI, and NarJ) and nitrate reduction (NirD) was found to be upregulated. Of particular interest, oxygen concentration might affect the virulence properties of S. aureus by regulating the expression of some virulence-associated genes such as pls, hly, splC and splD, epiG, and isaB. To date, the mechanism of anaerobic gene expression in S. aureus has not been fully characterized. In addition to srrA the mRNA levels of several other regulatory genes with yet unknown functions (e.g., SACOL0201, SACOL2360, and SACOL2658) were found to be upregulated during anaerobic growth, indicating a role in the regulation of anaerobic gene expression.


2006 ◽  
Vol 190 (2) ◽  
pp. 407-414 ◽  
Author(s):  
Kely de Picoli Souza ◽  
Francemilson Goulart da Silva ◽  
Maria Tereza Nunes

The neonatal period (NP) is a critical phase of the development in which the expression pattern of most genes is established. Thyroid hormones (TH) play a key role in this process and, alterations in its availability in the NP may lead to different patterns of gene expression, which might reflect in the permanent expression of several genes in the adulthood. GH gene expression in the pituitary is greatly dependent on TH in the early postnatal life; thus, modifications of thyroid state in NP might lead to alterations in GH gene expression as well as to physiological repercussions in the adult life. This study aimed to investigate this possibility by means of the induction of a neonatal hyperthyroidism in rats (4 μg of 3,5,3′-triiodo-l-thyronine (T3)/100 g body weight, s.c.) for 5, 15 or 30 days, and further evaluation of GH gene expression, as well as its physiological consequences in adult rats subjected to a transient hyperthyroidism in the first 30 days of life. GH mRNA level was shown to be increased in T3-treated rats for 5 days; when the treatment was extended to 15 or 30 days, the GH mRNA levels were similar to the control group. Moreover, rats treated with T3 for 30 days and killed when 90 days old, i.e., 60 days at the end of the T3 treatment, showed decreased GH mRNA content, body weight, bone mineral density, and lean body mass. In conclusion: (1) T3 effects on GH gene expression depend on the period of life in which the hyperthyroidism is set and on the length of T3 treatment in the NP and (2) transient neonatal hyperthyroidism leads to a lower GH mRNA expression in adult life accompanied by physiological repercussions indicative of GH deficiency.


2016 ◽  
Vol 28 (6) ◽  
pp. 806 ◽  
Author(s):  
Néstor Méndez Palacios ◽  
María Elena Ayala Escobar ◽  
Maximino Méndez Mendoza ◽  
Rubén Huerta Crispín ◽  
Octavio Guerrero Andrade ◽  
...  

Male germ-cell apoptosis occurs naturally and can be increased by exposure to drugs and toxic chemicals. Individuals may have different rates of apoptosis and are likely to also exhibit differential sensitivity to outside influences. Previously, we reported that p-chloroamphetamine (pCA), a substance that inhibits serotonin synthesis, induced germ-cell apoptosis in prepubertal male rats. Here, we identified prepubertal rats with naturally high or low rates of germ-cell apoptosis and evaluated gene expression in both groups. Bax and Shbg mRNA levels were higher in rats with high rates of germ-cell apoptosis. Rats were then treated with pCA and the neuro-hormonal response and gene expression were evaluated. Treatment with pCA induced a reduction in serotonin concentrations but levels of sex hormones and gonadotrophins were not changed. Rats with initially high rates of germ-cell apoptosis had even higher rates of germ-cell apoptosis after treatment with pCA. In rats with high rates of germ-cell apoptosis Bax mRNA expression remained high after treatment with pCA. On the basis of category, an inverse relationship between mRNA expression of Bax and Bcl2, Bax and AR and Bax and Hsd3b2 was found. Here we provide evidence that innate levels of germ-cell apoptosis could be explained by the level of mRNA expression of genes involved with apoptosis and spermatogenesis.


2019 ◽  
Vol 316 (5) ◽  
pp. G653-G667 ◽  
Author(s):  
Kamal Albarazanji ◽  
Matthew Jennis ◽  
Cassandre R. Cavanaugh ◽  
Wensheng Lang ◽  
Bhanu Singh ◽  
...  

Trypsin is the major serine protease responsible for intestinal protein digestion. An inhibitor, camostat (CS), reduced weight gain, hyperglycemia, and dyslipidemia in obese rats; however, the mechanisms for these are largely unknown. We reasoned that CS creates an apparent dietary protein restriction, which is known to increase hepatic fibroblast growth factor 21 (FGF21). Therefore, metabolic responses to CS and a gut-restricted CS metabolite, FOY-251, were measured in mice. Food intake, body weight, blood glucose, branched-chain amino acids (LC/MS), hormone levels (ELISA), liver pathology (histology), and transcriptional changes (qRT-PCR) were measured in ob/ob, lean and diet-induced obese (DIO) C57BL/6 mice. In ob/ob mice, CS in chow (9–69 mg/kg) or FOY-251 (46 mg/kg) reduced food intake and body weight gain to a similar extent as pair-fed mice. CS decreased blood glucose, liver weight, and lipidosis and increased FGF21 gene transcription and plasma levels. In lean mice, CS increased liver FGF21 mRNA and plasma levels. Relative to pair feeding, FOY-251 also increased plasma FGF21 and induced liver FGF21 and integrated stress response (ISR) transcription. In DIO mice, FOY-251 (100 mg/kg po) did not alter peak glucose levels but reduced the AUC of the glucose excursion in response to an oral glucose challenge. FOY-251 increased plasma FGF21 levels. In addition to previously reported satiety-dependent (cholecystokinin-mediated) actions, intestinal trypsin inhibition engages non-satiety-related pathways in both leptin-deficient and DIO mice. This novel mechanism improves metabolism by a liver-integrated stress response and increased FGF21 expression levels in mice. NEW & NOTEWORTHY Trypsin inhibitors, including plant-based consumer products, have long been associated with metabolic improvements. Studies in the 1980s and 1990s suggested this was due to satiety hormones and caloric wasting by loss of protein and fatty acids in feces. This work suggests an entirely new mechanism based on the lower amounts of digested protein available in the gut. This apparent protein reduction may cause beneficial metabolic adaptation by the intestinal-liver axis to perceived nutrient stress.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 383-384
Author(s):  
Seon Pil Yoo ◽  
Dilla Fassah ◽  
Myunggi Baik ◽  
sang Weon Na ◽  
Inhyuk Jeong ◽  
...  

Abstract This study investigated effects of dietary glycerol supplementation on liver, muscle, and adipose gene expression related with gluconeogenesis and lipid metabolism and association of gene expression levels with marbling score in Korean cattle steers. Fourteen Korean cattle steers (average age 28.4 months; average body weight 733 kg) were equally assigned to two groups (0 and 5% glycerol supplementation). Glycerol was provided with glycerol (63%)-adsorbed ground wheat bran (37%, DM) by top dressing during roughage feeding. A concentrate (1.2% of body weight) and 1.0 kg of ryegrass were individually fed twice daily. After four months of study, steers were slaughtered, and marbling score was evaluated. Longissimus thoracis (LT) and subcutaneous adipose tissue at the 13th thoracic vertebra area and liver were collected and analyzed for mRNA levels by quantitative real-time PCR. Statistical significance was analyzed by analysis of variance. Correlations were analyzed using Pearson’s correlation analysis. Glycerol supplementation increased (P = 0.01) marbling score. In the LT, glycerol supplementation tended to increase (0.05 < P ≤ 0.10) lipid uptake CD36 and lipoprotein lipase (LPL) mRNA levels. In subcutaneous adipose tissues, glycerol supplementation increased (P ≤ 0.05) LPL, adipogenic sterol regulatory element binding protein 1 (SREBP1), and lipogenic acetyl CoA carboxylase (ACC) mRNA levels and tended to increase (0.05 < P < 0.10) CD36, adipogenic peroxisome proliferator-activated gamma (PPARG), and lipogenic fatty acid synthase (FASN) expression. It did not affect (P > 0.05) mRNA levels of hepatic gluconeogenesis genes. Marbling score showed significant positive correlations (0.57 < r < 0.68; P < 0.05) with mRNA levels of several genes including LPL, PPARG, SREBP1, and ACC in adipose tissues, but not with any genes examined in the LT. Our study demonstrates that lipid uptake, adipogenesis and lipogenesis may mainly contribute to the increased marbling score by glycerol supplementation.


Sign in / Sign up

Export Citation Format

Share Document