Contribution of Mycorrhizal Fungi on Growth and Salinity Resistance of Citrus Roots (Citrus, Sp)

Nabatia ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Palupi N.P

Abiotic stress conditions with high salinity cause a decrease in plant growth and production in citrus plants. The application of mycorrhizal fungi with various species is expected to be able to overcome this problem to improve plant root conditions. The results showed that the application of mycorrhizal fungi was able to improve roots so as to increase nutrient absorption, be able to maintain plant conditions under salinity stress gradually, and be able to increase the capacity of higher seedlings to control ROS formation and to activate enzymatic and non-enzymatic antioxidant defenses.

2021 ◽  
Vol 3 ◽  
Author(s):  
Michael Prabhu Inbaraj

Crop plants are continuously exposed to various abiotic stresses like drought, salinity, ultraviolet radiation, low and high temperatures, flooding, metal toxicities, nutrient deficiencies which act as limiting factors that hampers plant growth and low agricultural productivity. Climate change and intensive agricultural practices has further aggravated the impact of abiotic stresses leading to a substantial crop loss worldwide. Crop plants have to get acclimatized to various environmental abiotic stress factors. Though genetic engineering is applied to improve plants tolerance to abiotic stresses, these are long-term strategies, and many countries have not accepted them worldwide. Therefore, use of microbes can be an economical and ecofriendly tool to avoid the shortcomings of other strategies. The microbial community in close proximity to the plant roots is so diverse in nature and can play an important role in mitigating the abiotic stresses. Plant-associated microorganisms, such as endophytes, arbuscular mycorrhizal fungi (AMF), and plant growth-promoting rhizobacteria (PGPR), are well-documented for their role in promoting crop productivity and providing stress tolerance. This mini review highlights and discusses the current knowledge on the role of various microbes and it's tolerance mechanisms which helps the crop plants to mitigate and tolerate varied abiotic stresses.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 545 ◽  
Author(s):  
Lyl Garcia ◽  
Dattamudi ◽  
Chanda ◽  
Jayachandran

Salinity is a major abiotic stress that can adversely affect plant growth, yield, other physiological parameters, and soil health. Salinity stress on biomass production of salt-sensitive crops, like snap bean (Phaseolus vulgaris), is a serious problem, and specifically in South Florida, USA, where saline soils can be found in major agricultural lands. Research studies focused on the ‘snap bean–Rhizobium–arbuscular mycorrhizal fungi (AMF)’ relationship under salinity stress are limited, and fewer studies have evaluated how this tripartite symbiosis affects glomalin production (GRSP), a glycoprotein released by AMF. A shade house experiment was conducted to elucidate the effects of three microbial inoculations (IC = inoculation control; IT1 = AMF and IT2 = AMF + Rhizobium) on three salinity treatments (SC = salinity control 0.6 dS m−1, S1 = 1.0 dS m−1, and S2 = 2.0 dS m−1) on snap bean growth and yield. Our results indicate that S2 reduced 20% bean biomass production, 11% plant height, 13% root weight, and 23% AMF root colonization. However, microbial inoculations increased 26% bean yield over different salinity treatments. Maximum salinity stress (S2) increased 6% and 18% GRSP production than S1 and SC, respectively, indicating the relative advantage of abiotic stress on AMF’s role in soil. Dual inoculation (IT2) demonstrated a beneficial role on all physiological parameters, biomass production, and GRSP synthesis compared to single inoculation (IT1) treatment with all three salinity levels.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
María Josefina Bompadre ◽  
Mariana Pérgola ◽  
Laura Fernández Bidondo ◽  
Roxana Paula Colombo ◽  
Vanesa Analía Silvani ◽  
...  

The capacity of roots to sense soil physicochemical parameters plays an essential role in maintaining plant nutritional and developmental functions under abiotic stress. These conditions generate reactive oxygen species (ROS) in plant tissues causing oxidation of proteins and lipids among others. Some plants have developed adaptive mechanisms to counteract such adverse conditions such as symbiotic association with arbuscular mycorrhizal fungi (AMF). AMF enhance plant growth and improve transplant survival by protecting host plants against environmental stresses. The aim of this study was to evaluate the alleviation of transplanting stress by two strains ofRhizophagus irregularis(GC2 and GA5) in olive. Our results show that olive plants have an additional energetic expense in growth due to an adaptative response to the growing stage and to the mycorrhizal colonization at the first transplant. However, at the second transplant the coinoculation improves olive plant growth and protects against oxidative stress followed by the GA5-inoculation. In conclusion, a combination of two AMF strains at the beginning of olive propagation produces vigorous plants successfully protected in field cultivation even with an additional cost at the beginning of growth.


Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 364 ◽  
Author(s):  
Anamika Pandey ◽  
Mohd Kamran Khan ◽  
Erdogan Esref Hakki ◽  
Sait Gezgin ◽  
Mehmet Hamurcu

The continuously changing environment has intensified the occurrence of abiotic stress conditions. Individually, boron (B) toxicity and salinity stress are well recognized as severe stress conditions for plants. However, their coexistence in arid and semi-arid agricultural regions has shown ambiguous effects on plant growth and development. Few studies have reported that combined boron toxicity and high salinity stress have more damaging effects on plant growth than individual B and salt stress, while other studies have highlighted less damaging effects of the combined stress. Hence, it is interesting to understand the positive interaction of this combined stress so that it can be effectively employed for the improvement of crops that generally show the negative effects of this combined stress. In this review, we discussed the possible processes that occur in plants in response to this combined stress condition. We highly suggest that the combined B and salinity stress condition should be considered as a novel stress condition by researchers; hence, we recommend the name “BorSal” for this combined boron toxicity and high salinity state in the soil. Membrane-bound activities, mobility of ions, water transport, pH changes, transpiration, photosynthesis, antioxidant activities, and different molecular transporters are involved in the effects of BorSal interaction in plants. The discussed mechanisms indicate that the BorSal stress state should be studied in light of the involved physiological and molecular processes that occur after B and salt interaction in plants.


Biocelebes ◽  
2020 ◽  
Vol 14 (2) ◽  
pp. 187-198
Author(s):  
Khairun Nisa ◽  
Yusran ◽  
Wahyu Harso

Increasing plant growth by arbuscula mycorrhizal fungi depends on the fungus and plant spesies. The aim of this study was to determine the efectivity of fungal mycorrhizal fungus on the growth of cayenne pepper, tomato and eggplant  which are Solanaceae family members. The study was conducted by Completely Randomized Design method.with two factors. The fisrt factor was species of experimental plant consisted of  cayenne pepper (Capsicum frutescens L.), tomato (Solanum lycopersicum L.) and eggplant (Solanum melongena L.). The second factor was addition of Glomus clorum inokulum consisted of with and without inoculum addition. The result showed that there was no effect of inoculum addition on plant growth of three experiemal plants. The quality of inoculum used for this experiment was not good enough furthermore fungi could not germinate and colonize plant root.


2018 ◽  
Vol 19 (8) ◽  
pp. 2169 ◽  
Author(s):  
Dengwei Jue ◽  
Xuelian Sang ◽  
Liqin Liu ◽  
Bo Shu ◽  
Yicheng Wang ◽  
...  

Longan is an important fruit tree in the subtropical region of Southeast Asia and Australia. However, its blooming and its yield are susceptible to stresses such as droughts, high salinity, and high and low temperature. To date, the molecular mechanisms of abiotic stress tolerance and flower induction in longan have not been elucidated. WRKY transcription factors (TFs), which have been studied in various plant species, play important regulatory roles in plant growth, development, and responses to stresses. However, there is no report about WRKYs in longan. In this study, we identified 55 WRKY genes with the conserved WRKY domain and zinc finger motif in the longan genome. Based on the structural features of WRKY proteins and topology of the phylogenetic tree, the longan WRKY (DlWRKY) family was classified into three major groups (I–III) and five subgroups (IIa–IIe) in group II. Tissue expression analysis showed that 25 DlWRKYs were highly expressed in almost all organs, suggesting that these genes may be important for plant growth and organ development in longan. Comparative RNA-seq and qRT-PCR-based gene expression analysis revealed that 18 DlWRKY genes showed a specific expression during three stages of flower induction in “Sijimi” (“SJ”), which exhibited the “perpetual flowering” (PF) habit, indicating that these 18 DlWRKY genes may be involved in the flower induction and the genetic control of the perpetual flowering trait in longan. Furthermore, the RT-qPCR analysis illustrated the significant variation of 27, 18, 15, 17, 27, and 23 DlWRKY genes under SA (Salicylic acid), MeJA (Methyl Jasmonate), heat, cold, drought, or high salinity treatment, respectively, implicating that they might be stress- or hormone-responsive genes. In summary, we systematically and comprehensively analyzed the structure, evolution, and expression pattern of the DlWRKY genes. The results presented here increase our understanding of the WRKY family in fruit trees and provide a basis for the further elucidation of the biological function of DlWRKY genes in longan.


Sign in / Sign up

Export Citation Format

Share Document