scholarly journals Roles of Chinese Medicine and Gut Microbiota in Chronic Constipation

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Zhenyuan Xu ◽  
Tianhao Liu ◽  
Qingli Zhou ◽  
Jing Chen ◽  
Jiali Yuan ◽  
...  

Chronic constipation is a common gastrointestinal dysfunction, but its aetiology and pathogenesis are still unclear. Interestingly, the compositions of the gut microbiota in constipation patients and healthy controls are different. Various studies reported the different gut microbiota alterations in constipation patients, but most studies indicated that constipation patients showed the decreased beneficial bacteria and the reduced species richness of gut bacteria. Besides, the alterations in the gut microbiota may lead to constipation and constipation-related symptoms and the regulation of gut microbiota has a positive effect on gut functional diseases such as constipation. Microbial treatment methods, such as probiotics, prebiotics, synbiotics, and fecal microbiota transplantation, can be used to regulate gut microbiota. Increasing evidences have suggested that Chinese medicine (CM) has a good therapeutic effect on chronic constipation. Chinese medicine is well known for its multitarget and multimode effects on diseases as well as less side effects. In previous studies, after the treatment of constipation with CM, the gut microbiota was restored, indicating that the gut microbiota might be the target or important way for CM to exert its efficacy. In this review, we summarized the effects of microbial treatment and CM on the gut microbiota of constipation patients and discussed the relationship between CM and gut microbiota.

2021 ◽  
Vol 1 (1) ◽  
pp. 1-6
Author(s):  
Redi Bintang Pratama ◽  
◽  
Khairun Nisa Berawi ◽  
Nurul Islamy ◽  
◽  
...  

Abstract Osteoarthritis (OA) is one of the most commonly experienced musculoskeletal diseases. Various studies were conducted to find the relationship between the gut microbiota and the incidence of osteoarthritis. The gut microbiota encourages the production of proinflammatory cytokines and bacterial metabolites which are considered to be part of the pathophysiological mechanisms of osteoarthritis. Various risk factors that trigger osteoarthritis, such as age, gender, diet, and obesity have an influence on the gut microbiota. This suggests the possible involvement of the microbiota in the incidence of osteoarthritis. The increasing prevalence of osteoarthritis calls for an effective disease-modifying therapy strategy to relieve symptoms and slow the progression of the condition. The investigators hypothesized that modulation of the gut microbiota by external approaches might influence the progression of osteoarthritis. To date, some evidence suggests that gut microbiota intervention can be realized through probiotics, prebiotics, exercise, and fecal microbiota transplantation (FMT). Keywords: Osteoarthritis, Microbiota, Risk Factor


2021 ◽  
Vol 12 ◽  
Author(s):  
Zeyu Zhao ◽  
Zhengchang Guo ◽  
Zhengliang Yin ◽  
Yue Qiu ◽  
Bo Zhou

Background: Intestinal damage caused by intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) can lead to the ectopic gut microbiota, which can contribute to liver injury via portal veins. Therefore, it is speculated that gut microbiota disorder caused by IAH/ACS may result in liver injury. The relationship between gut microbiota and IAH/ACS-related liver injury was investigated in this study.Methods: A model of IAH was established in rats, and 16S rRNA sequencing was analyzed for gut microbiota in the feces of rats. The elimination of gut microbiota was completed by antibiotics gavage, and fecal microbiota transplantation (FMT) was used to change the composition of gut microbiota in rats.Results: In addition to the traditional cause of liver blood vessel compression, liver injury caused by IAH was also associated with gut microbiota dysbiosis. Gut microbiota clearance can relieve liver injury caused by IAH, while FMT from IAH-intervened rats can aggravate IAH-related liver injury.Conclusion: The gut microbiota was one of the most important factors contributing to the IAH-related liver injury, and the JNK/p38 signaling pathway was activated in this process.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7502 ◽  
Author(s):  
Nihal Hasan ◽  
Hongyi Yang

Gut microbiota have important functions in the body, and imbalances in the composition and diversity of those microbiota can cause several diseases. The host fosters favorable microbiota by releasing specific factors, such as microRNAs, and nonspecific factors, such as antimicrobial peptides, mucus and immunoglobulin A that encourage the growth of specific types of bacteria and inhibit the growth of others. Diet, antibiotics, and age can change gut microbiota, and many studies have shown the relationship between disorders of the microbiota and several diseases and reported some ways to modulate that balance. In this review, we highlight how the host shapes its gut microbiota via specific and nonspecific factors, how environmental and nutritional factors affect it, and how to modulate it using prebiotics, probiotics, and fecal microbiota transplantation.


2020 ◽  
Vol 7 ◽  
Author(s):  
Xupeng Yuan ◽  
Jiahao Yan ◽  
Ruizhi Hu ◽  
Yanli Li ◽  
Ying Wang ◽  
...  

Recent evidences suggest that gut microbiota plays an important role in regulating physiological and metabolic activities of pregnant sows, and β-carotene has a potentially positive effect on reproduction, but the impact of β-carotene on gut microbiota in pregnant sows remains unknown. This study aimed to explore the effect and mechanisms of β-carotene on the reproductive performance of sows from the aspect of gut microbiota. A total of 48 hybrid pregnant sows (Landrace × Yorkshire) with similar parity were randomly allocated into three groups (n = 16) and fed with a basal diet or a diet containing 30 or 90 mg/kg of β-carotene from day 90 of gestation until parturition. Dietary supplementation of 30 or 90 mg/kg β-carotene increased the number of live birth to 11.82 ± 1.54 and 12.29 ± 2.09, respectively, while the control group was 11.00 ± 1.41 (P = 0.201). Moreover, β-carotene increased significantly the serum nitric oxide (NO) level and glutathione peroxidase (GSH-Px) activity (P < 0.05). Characterization of fecal microbiota revealed that 90 mg/kg β-carotene increased the diversity of the gut flora (P < 0.05). In particular, β-carotene decreased the relative abundance of Firmicutes including Lachnospiraceae AC2044 group, Lachnospiraceae NK4B4 group and Ruminococcaceae UCG-008, but enriched Proteobacteria including Bilophila and Sutterella, and Actinobacteria including Corynebacterium and Corynebacterium 1 which are related to NO synthesis. These data demonstrated that dietary supplementation of β-carotene may increase antioxidant enzyme activity and NO, an important vasodilator to promote the neonatal blood circulation, through regulating gut microbiota in sows.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 734
Author(s):  
Gwangbeom Heo ◽  
Yunna Lee ◽  
Eunok Im

Inflammatory mediators modulate inflammatory pathways during the development of colorectal cancer. Inflammatory mediators secreted by both immune and tumor cells can influence carcinogenesis, progression, and tumor metastasis. The gut microbiota, which colonize the entire intestinal tract, especially the colon, are closely linked to colorectal cancer through an association with inflammatory mediators such as tumor necrosis factor, nuclear factor kappa B, interleukins, and interferons. This association may be a potential therapeutic target, since therapeutic interventions targeting the gut microbiota have been actively investigated in both the laboratory and in clinics and include fecal microbiota transplantation and probiotics.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 690
Author(s):  
Umair Shabbir ◽  
Muhammad Sajid Arshad ◽  
Aysha Sameen ◽  
Deog-Hwan Oh

The gut microbiota (GM) represents a diverse and dynamic population of microorganisms and about 100 trillion symbiotic microbial cells that dwell in the gastrointestinal tract. Studies suggest that the GM can influence the health of the host, and several factors can modify the GM composition, such as diet, drug intake, lifestyle, and geographical locations. Gut dysbiosis can affect brain immune homeostasis through the microbiota–gut–brain axis and can play a key role in the pathogenesis of neurodegenerative diseases, including dementia and Alzheimer’s disease (AD). The relationship between gut dysbiosis and AD is still elusive, but emerging evidence suggests that it can enhance the secretion of lipopolysaccharides and amyloids that may disturb intestinal permeability and the blood–brain barrier. In addition, it can promote the hallmarks of AD, such as oxidative stress, neuroinflammation, amyloid-beta formation, insulin resistance, and ultimately the causation of neural death. Poor dietary habits and aging, along with inflammatory responses due to dysbiosis, may contribute to the pathogenesis of AD. Thus, GM modulation through diet, probiotics, or fecal microbiota transplantation could represent potential therapeutics in AD. In this review, we discuss the role of GM dysbiosis in AD and potential therapeutic strategies to modulate GM in AD.


Author(s):  
Jong-Hwa Kim ◽  
Kiyoung Kim ◽  
Wonyong Kim

AbstractThe pathogenesis of atopic dermatitis (AD) involves complex factors, including gut microbiota and immune modulation, which remain poorly understood. The aim of this study was to restore gut microbiota via fecal microbiota transplantation (FMT) to ameliorate AD in mice. FMT was performed using stool from donor mice. The gut microbiota was characterized via 16S rRNA sequencing and analyzed using Quantitative Insights into Microbial Ecology 2 with the DADA2 plugin. Gut metabolite levels were determined by measuring fecal short-chain fatty acid (SCFA) contents. AD-induced allergic responses were evaluated by analyzing blood parameters (IgE levels and eosinophil percentage, eosinophil count, basophil percentage, and monocyte percentage), the levels of Th1 and Th2 cytokines, dermatitis score, and the number of mast cells in the ileum and skin tissues. Calprotectin level was measured to assess gut inflammation after FMT. FMT resulted in the restoration of gut microbiota to the donor state and increases in the levels of SCFAs as gut metabolites. In addition, FMT restored the Th1/Th2 balance, modulated Tregs through gut microbiota, and reduced IgE levels and the numbers of mast cells, eosinophils, and basophils. FMT is associated with restoration of gut microbiota and immunologic balance (Th1/Th2) along with suppression of AD-induced allergic responses and is thus a potential new therapy for AD.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiao-yi Kuai ◽  
Xiao-han Yao ◽  
Li-juan Xu ◽  
Yu-qing Zhou ◽  
Li-ping Zhang ◽  
...  

AbstractParkinson’s disease (PD) is a neurodegenerative disorder and 70–80% of PD patients suffer from gastrointestinal dysfunction such as constipation. We aimed to assess the efficacy and safety of fecal microbiota transplantation (FMT) for treating PD related to gastrointestinal dysfunction. We conducted a prospective, single- study. Eleven patients with PD received FMT. Fecal samples were collected before and after FMT and subjected to 16S ribosomal DNA (rDNA) gene sequencing. Hoehn-Yahr (H-Y) grade, Unified Parkinson's Disease Rating Scale (UPDRS) score, and the Non-Motion Symptom Questionnaire (NMSS) were used to assess improvements in motor and non-motor symptoms. PAC-QOL score and Wexner constipation score were used to assess the patient's constipation symptoms. All patients were tested by the small intestine breath hydrogen test, performed before and after FMT. Community richness (chao) and microbial structure in before-FMT PD patients were significantly different from the after-FMT. We observed an increased abundance of Blautia and Prevotella in PD patients after FMT, while the abundance of Bacteroidetes decreased dramatically. After FMT, the H-Y grade, UPDRS, and NMSS of PD patients decreased significantly. Through the lactulose H2 breath test, the intestinal bacterial overgrowth (SIBO) in PD patients returned to normal. The PAC-QOL score and Wexner constipation score in after-FMT patients decreased significantly. Our study profiles specific characteristics and microbial dysbiosis in the gut of PD patients. FMT might be a therapeutic potential for reconstructing the gut microbiota of PD patients and improving their motor and non-motor symptoms.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 145
Author(s):  
Julio Plaza-Díaz ◽  
Patricio Solis-Urra ◽  
Jerónimo Aragón-Vela ◽  
Fernando Rodríguez-Rodríguez ◽  
Jorge Olivares-Arancibia ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is an increasing cause of chronic liver illness associated with obesity and metabolic disorders, such as hypertension, dyslipidemia, or type 2 diabetes mellitus. A more severe type of NAFLD, non-alcoholic steatohepatitis (NASH), is considered an ongoing global health threat and dramatically increases the risks of cirrhosis, liver failure, and hepatocellular carcinoma. Several reports have demonstrated that liver steatosis is associated with the elevation of certain clinical and biochemical markers but with low predictive potential. In addition, current imaging methods are inaccurate and inadequate for quantification of liver steatosis and do not distinguish clearly between the microvesicular and the macrovesicular types. On the other hand, an unhealthy status usually presents an altered gut microbiota, associated with the loss of its functions. Indeed, NAFLD pathophysiology has been linked to lower microbial diversity and a weakened intestinal barrier, exposing the host to bacterial components and stimulating pathways of immune defense and inflammation via toll-like receptor signaling. Moreover, this activation of inflammation in hepatocytes induces progression from simple steatosis to NASH. In the present review, we aim to: (a) summarize studies on both human and animals addressed to determine the impact of alterations in gut microbiota in NASH; (b) evaluate the potential role of such alterations as biomarkers for prognosis and diagnosis of this disorder; and (c) discuss the involvement of microbiota in the current treatment for NAFLD/NASH (i.e., bariatric surgery, physical exercise and lifestyle, diet, probiotics and prebiotics, and fecal microbiota transplantation).


Brain ◽  
2021 ◽  
Author(s):  
Qing Wang ◽  
Yuqi Luo ◽  
K Ray Chaudhuri ◽  
Richard Reynolds ◽  
Eng-King Tan ◽  
...  

Abstract Parkinson's disease is a common neurodegenerative disease in which gastrointestinal symptoms may appear prior to motor symptoms. The gut microbiota of patients with Parkinson's disease shows unique changes, which may be used as early biomarkers of disease. Alteration in gut microbiota composition may be related to the cause or effect of motor or non-motor symptoms, but the specific pathogenic mechanisms are unclear. The gut microbiota and its metabolites have been suggested to be involved in the pathogenesis of Parkinson's disease by regulating neuroinflammation, barrier function and neurotransmitter activity. There is bidirectional communication between the enteric nervous system and the central nervous system, and the microbiota-gut-brain axis may provide a pathway for the transmission of α-synuclein. We highlight recent discoveries and alterations of the gut microbiota in Parkinson's disease, and highlight current mechanistic insights on the microbiota-gut-brain axis in disease pathophysiology. We discuss the interactions between production and transmission of α-synuclein and gut inflammation and neuroinflammation. In addition, we also draw attention to diet modification, use of probiotics and prebiotics and fecal microbiota transplantation as potential therapeutic approaches that may lead to a new treatment paradigm for Parkinson's disease.


Sign in / Sign up

Export Citation Format

Share Document