scholarly journals Enhanced risk of concurrent regional droughts with increased ENSO variability and warming

Author(s):  
Jitendra Singh ◽  
Moetasim Ashfaq ◽  
Christopher Skinner ◽  
Weston Anderson ◽  
Vimal Mishra ◽  
...  

Abstract Spatially compound extremes pose substantial threats to globally interconnected social-economic systems. We use an Earth system model large ensemble to examine the future risk of compound droughts during the boreal summer over ten global regions with highly seasonal climate. Relative to the late-20th century, the probability, mean extent and severity of compound droughts increase by ~60%, ~10% and ~20% respectively by the late-21st century, with a disproportionate increase in risk across North America and the Amazon. These changes result in a ~9-fold increase in exposure over agricultural areas and ~5 to 20-fold increase in population exposure depending on the shared socioeconomic pathway. ENSO is the predominant large-scale driver of compound droughts with 68% of historical events occurring during El Niño or La Niña conditions. ENSO teleconnections remain stationary in the future though an ~22% increase in ENSO extremes combined with projected warming, drive the elevated risk of compound droughts.

2020 ◽  
Vol 20 (17) ◽  
pp. 10667-10686
Author(s):  
Martin O. P. Ramacher ◽  
Lin Tang ◽  
Jana Moldanová ◽  
Volker Matthias ◽  
Matthias Karl ◽  
...  

Abstract. Shipping is an important source of air pollutants, from the global to the local scale. Ships emit substantial amounts of sulfur dioxides, nitrogen dioxides, and particulate matter in the vicinity of coasts, threatening the health of the coastal population, especially in harbour cities. Reductions in emissions due to shipping have been targeted by several regulations. Nevertheless, effects of these regulations come into force with temporal delays, global ship traffic is expected to grow in the future, and other land-based anthropogenic emissions might decrease. Thus, it is necessary to investigate combined impacts to identify the impact of shipping activities on air quality, population exposure, and health effects in the future. We investigated the future effect of shipping emissions on air quality and related health effects considering different scenarios of the development of shipping under current regional trends of economic growth and already decided regulations in the Gothenburg urban area in 2040. Additionally, we investigated the impact of a large-scale implementation of shore electricity in the Port of Gothenburg. For this purpose, we established a one-way nested chemistry transport modelling (CTM) system from the global to the urban scale, to calculate pollutant concentrations, population-weighted concentrations, and health effects related to NO2, PM2.5, and O3. The simulated concentrations of NO2 and PM2.5 in future scenarios for the year 2040 are in general very low with up to 4 ppb for NO2 and up to 3.5 µg m−3 PM2.5 in the urban areas which are not close to the port area. From 2012 the simulated overall exposure to PM2.5 decreased by approximately 30 % in simulated future scenarios; for NO2 the decrease was over 60 %. The simulated concentrations of O3 increased from the year 2012 to 2040 by about 20 %. In general, the contributions of local shipping emissions in 2040 focus on the harbour area but to some extent also influence the rest of the city domain. The simulated impact of onshore electricity implementation for shipping in 2040 shows reductions for NO2 in the port of up to 30 %, while increasing O3 of up to 3 %. Implementation of onshore electricity for ships at berth leads to additional local reduction potentials of up to 3 % for PM2.5 and 12 % for SO2 in the port area. All future scenarios show substantial decreases in population-weighted exposure and health-effect impacts.


2020 ◽  
Author(s):  
Martin O. P. Ramacher ◽  
Lin Tang ◽  
Jana Moldanová ◽  
Volker Matthias ◽  
Matthias Karl ◽  
...  

Abstract. Shipping is an important source of air pollutants, from the global to the local scale. Ships are emitting substantial amounts of sulphur dioxides, nitrogen dioxides and particulate matter in the vicinity of coasts, threatening the health of the coastal population, especially in harbour cities. Reductions of emissions due to shipping have been targeted by several regulations. Nevertheless, effects of these regulations come into force with temporal delays, global ship traffic is expected to grow in the future, and other land-based anthropogenic emissions might decrease. Thus, it is necessary to investigate combined impacts to identify the impact of shipping activities on air quality, population exposure and health-effects in the future. We investigated the future effect of shipping emissions on air quality and related health effects considering different scenarios of the development of shipping under current regional trends of economic growth and already decided regulations in the Gothenburg urban area in 2040. Additionally, we investigated the impact of a large-scale implementation of shore electricity in the port of Gothenburg. For this purpose, we established a one-way nested chemistry transport modelling (CTM) system from the global to the urban scale, to calculate pollutant concentrations, population weighted concentrations and health-effects related to NO2, PM2.5 and O3. The simulated concentrations of NO2 and PM2.5 in future scenarios for the year 2040 are in general very low with up to 4 ppb for NO2 and up to 3.5 µg/m3 PM2.5 in the urban areas which are not close to the port area. From 2012 the simulated overall exposure to PM2.5 decreased by approximately 30 % in simulated future scenarios, for NO2 the decrease was over 60 %. The simulated concentrations of O3 increased from year 2012 to 2040 by about 20 %. In general, the contributions of local shipping emissions in 2040 focus on the harbour area but to some extent also influence the rest of the city domain. The simulated impact of wide use of shore-site electricity for shipping in 2040 shows reductions for NO2 in the port with up to 30 %, while increasing O3 of up to 3 %. Implementation of on-shore electricity for ships at berth leads to additional local reduction potentials of up to 3 % for PM2.5 and 12 % for SO2 in the port area. All future scenarios show substantial decreases in population weighted exposure and health-effect impacts.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Yahya Darmawan ◽  
Huang-Hsiung Hsu ◽  
Jia-Yuh Yu

This study aims to explore the contrasting characteristics of large-scale circulation that led to the precipitation anomalies over the northern parts of Sumatra Island. Further, the impact of varying the Asian–Australian Monsoon (AAM) was investigated for triggering the precipitation variability over the study area. The moisture budget analysis was applied to quantify the most dominant component that induces precipitation variability during the JJA (June, July, and August) period. Then, the composite analysis and statistical approach were applied to confirm the result of the moisture budget. Using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Anaysis Interim (ERA-Interim) from 1981 to 2016, we identified 9 (nine) dry and 6 (six) wet years based on precipitation anomalies, respectively. The dry years (wet years) anomalies over the study area were mostly supported by downward (upward) vertical velocity anomaly instead of other variables such as specific humidity, horizontal velocity, and evaporation. In the dry years (wet years), there is a strengthening (weakening) of the descent motion, which triggers a reduction (increase) of convection over the study area. The overall downward (upward) motion of westerly (easterly) winds appears to suppress (support) the convection and lead to negative (positive) precipitation anomaly in the whole region but with the largest anomaly over northern parts of Sumatra. The AAM variability proven has a significant role in the precipitation variability over the study area. A teleconnection between the AAM and other global circulations implies the precipitation variability over the northern part of Sumatra Island as a regional phenomenon. The large-scale tropical circulation is possibly related to the PWC modulation (Pacific Walker Circulation).


Urban Science ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 42
Author(s):  
Dolores Brandis García

Since the late 20th century major, European cities have exhibited large projects driven by neoliberal urban planning policies whose aim is to enhance their position on the global market. By locating these projects in central city areas, they also heighten and reinforce their privileged situation within the city as a whole, thus contributing to deepening the centre–periphery rift. The starting point for this study is the significance and scope of large projects in metropolitan cities’ urban planning agendas since the final decade of the 20th century. The aim of this article is to demonstrate the correlation between the various opposing conservative and progressive urban policies, and the projects put forward, for the city of Madrid. A study of documentary sources and the strategies deployed by public and private agents are interpreted in the light of a process during which the city has had a succession of alternating governments defending opposing urban development models. This analysis allows us to conclude that the predominant large-scale projects proposed under conservative policies have contributed to deepening the centre–periphery rift appreciated in the city.


Author(s):  
Jane J. Aggrey ◽  
Mirjam A. F. Ros-Tonen ◽  
Kwabena O. Asubonteng

AbstractArtisanal and small-scale mining (ASM) in sub-Saharan Africa creates considerable dynamics in rural landscapes. Many studies addressed the adverse effects of mining, but few studies use participatory spatial tools to assess the effects on land use. Hence, this paper takes an actor perspective to analyze how communities in a mixed farming-mining area in Ghana’s Eastern Region perceive the spatial dynamics of ASM and its effects on land for farming and food production from past (1986) to present (2018) and toward the future (2035). Participatory maps show how participants visualize the transformation of food-crop areas into small- and large-scale mining, tree crops, and settlement in all the communities between 1986 and 2018 and foresee these trends to continue in the future (2035). Participants also observe how a mosaic landscape shifts toward a segregated landscape, with simultaneous fragmentation of their farming land due to ASM. Further segregation is expected in the future, with attribution to the expansion of settlements being an unexpected outcome. Although participants expect adverse effects on the future availability of food-crop land, no firm conclusions can be drawn about the anticipated effect on food availability. The paper argues that, if responsibly applied and used to reveal community perspectives and concerns about landscape dynamics, participatory mapping can help raise awareness of the need for collective action and contribute to more inclusive landscape governance. These findings contribute to debates on the operationalization of integrated and inclusive landscape approaches and governance, particularly in areas with pervasive impacts of ASM.


2019 ◽  
Vol 11 (11) ◽  
pp. 3072 ◽  
Author(s):  
Dian Fiantis ◽  
Frisa Ginting ◽  
Gusnidar ◽  
M. Nelson ◽  
Budiman Minasny

Volcanic eruptions affect land and humans globally. When a volcano erupts, tons of volcanic ash materials are ejected to the atmosphere and deposited on land. The hazard posed by volcanic ash is not limited to the area in proximity to the volcano, but can also affect a vast area. Ashes ejected from volcano’s affect people’s daily life and disrupts agricultural activities and damages crops. However, the positive outcome of this natural event is that it secures fertile soil for the future. This paper examines volcanic ash (tephra) from a soil security view-point, mainly its capability. This paper reviews the positive aspects of volcanic ash, which has a high capability to supply nutrients to plant, and can also sequester a large amount of carbon out of the atmosphere. We report some studies around the world, which evaluated soil organic carbon (SOC) accumulation since volcanic eruptions. The mechanisms of SOC protection in volcanic ash soil include organo-metallic complexes, chemical protection, and physical protection. Two case studies of volcanic ash from Mt. Talang and Sinabung in Sumatra, Indonesia showed the rapid accumulation of SOC through lichens and vascular plants. Volcanic ash plays an important role in the global carbon cycle and ensures soil security in volcanic regions of the world in terms of boosting its capability. However, there is also a human dimension, which does not go well with volcanic ash. Volcanic ash can severely destroy agricultural areas and farmers’ livelihoods. Connectivity and codification needs to ensure farming in the area to take into account of risk and build appropriate adaptation and resilient strategy.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 179
Author(s):  
Roxanne Ahmed ◽  
Terry Prowse ◽  
Yonas Dibike ◽  
Barrie Bonsal

Spring freshet is the dominant annual discharge event in all major Arctic draining rivers with large contributions to freshwater inflow to the Arctic Ocean. Research has shown that the total freshwater influx to the Arctic Ocean has been increasing, while at the same time, the rate of change in the Arctic climate is significantly higher than in other parts of the globe. This study assesses the large-scale atmospheric and surface climatic conditions affecting the magnitude, timing and regional variability of the spring freshets by analyzing historic daily discharges from sub-basins within the four largest Arctic-draining watersheds (Mackenzie, Ob, Lena and Yenisei). Results reveal that climatic variations closely match the observed regional trends of increasing cold-season flows and earlier freshets. Flow regulation appears to suppress the effects of climatic drivers on freshet volume but does not have a significant impact on peak freshet magnitude or timing measures. Spring freshet characteristics are also influenced by El Niño-Southern Oscillation, the Pacific Decadal Oscillation, the Arctic Oscillation and the North Atlantic Oscillation, particularly in their positive phases. The majority of significant relationships are found in unregulated stations. This study provides a key insight into the climatic drivers of observed trends in freshet characteristics, whilst clarifying the effects of regulation versus climate at the sub-basin scale.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ming Sun ◽  
Zhixiao Dong ◽  
Jian Yang ◽  
Wendan Wu ◽  
Chenglin Zhang ◽  
...  

Abstract Background Prairie grass (Bromus catharticus) is a typical cool-season forage crop with high biomass production and fast growth rate during winter and spring. However, its genetic research and breeding has remained stagnant due to limited available genomic resources. The aim of this study was to generate large-scale genomic data using high-throughput transcriptome sequencing, and perform a preliminary validation of EST-SSR markers of B. catharticus. Results Eleven tissue samples including seeds, leaves, and stems were collected from a new high-yield strain of prairie grass BCS1103. A total of 257,773 unigenes were obtained, of which 193,082 (74.90%) were annotated. Comparison analysis between tissues identified 1803, 3030, and 1570 genes specifically and highly expressed in seed, leaf, and stem, respectively. A total of 37,288 EST-SSRs were identified from unigene sequences, and more than 80,000 primer pairs were designed. We synthesized 420 primer pairs and selected 52 ones with high polymorphisms to estimate genetic diversity and population structure in 24 B. catharticus accessions worldwide. Despite low diversity indicated by an average genetic distance of 0.364, the accessions from South America and Asia and wild accessions showed higher genetic diversity. Moreover, South American accessions showed a pure ancestry, while Asian accessions demonstrated mixed internal relationships, which indicated a different probability of gene flow. Phylogenetic analysis clustered the studied accessions into four clades, being consistent with phenotypic clustering results. Finally, Mantel analysis suggested the total phenotypic variation was mostly contributed by genetic component. Stem diameter, plant height, leaf width, and biomass yield were significantly correlated with genetic data (r > 0.6, P < 0.001), and might be used in the future selection and breeding. Conclusion A genomic resource was generated that could benefit genetic and taxonomic studies, as well as molecular breeding for B. catharticus and its relatives in the future.


2021 ◽  
Vol 56 (2) ◽  
pp. 113-119
Author(s):  
Xinming Xia ◽  
Wan-Hsin Liu

AbstractThis paper analyses how China’s investments in Germany have developed over time and the potential impact of the COVID-19 pandemic in this regard, based on four different datasets, including our own survey in mid-2020. Our analysis shows that Germany is currently one of the most attractive investment destinations for Chinese investors. Chinese state-owned enterprises have played an important role as investors in Germany — particularly in large-scale projects. The COVID-19 pandemic has had some negative but rather temporary effects on Chinese investments in Germany. Germany is expected to stay attractive to Chinese investors who seek to gain access to advanced technologies and know-how in the future.


Sign in / Sign up

Export Citation Format

Share Document