scholarly journals Comparison Of Tolerant And Susceptible Cultivars Revealed The Roles of Circular RNAs In Rice Responding To Salt Stress

Author(s):  
Junliang Yin ◽  
Yike Liu ◽  
Lin Lu ◽  
Jian Zhang ◽  
Shaoyu Chen ◽  
...  

Abstract As a newly characterized class of noncoding RNAs, circular RNAs (circRNAs) have been identified in many plant species, and play important roles in plant stress responses. However, little is known about how salt stress mediates the expression of circRNAs in rice. In this study, we identified circRNAs from root tissues of salt-susceptible recipient cultivar 93-11 and salt-tolerant introgression line 9L136. A total of 190 circRNAs were identified. Among them, 93 circRNAs were differentially expressed under salt stress in 93-11 (36 up- and 57 down-regulated) and 95 in 9L136 (46 up- and 49 down-regulated). Salt stress significantly decreased the average expression level of circRNAs in 93-11, but circRNA expression levels were slightly increased in 9L136, suggesting that circRNAs had different response patterns in these two cultivars. Function annotation and enrichment analysis indicated that, through cis-regulation and circRNA-miRNA-mRNA network regulation, those induced circRNAs were commonly involved in transcription, signal transduction, ion transportation, and secondary metabolism. Compared to 93-11, salt-induced circRNAs in line 9L136 targeted more stress response genes participating in transcription regulation, ion transportation, and signal transduction, which may contribute to the salt tolerance of 9L136. Summarily, this study revealed the common response of rice circRNAs to salt stress, and the possible circRNA-related salt tolerance mechanisms of 9L136.

Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiang Zhang ◽  
Yan Long ◽  
Jingjing Huang ◽  
Jixing Xia

Abstract Background Salt stress threatens crop yields all over the world. Many NAC transcription factors have been reported to be involved in different abiotic stress responses, but it remains unclear how loss of these transcription factors alters the transcriptomes of plants. Previous reports have demonstrated that overexpression of OsNAC45 enhances salt and drought tolerance in rice, and that OsNAC45 may regulate the expression of two specific genes, OsPM1 and OsLEA3–1. Results Here, we found that ABA repressed, and NaCl promoted, the expression of OsNAC45 in roots. Immunostaining showed that OsNAC45 was localized in all root cells and was mainly expressed in the stele. Loss of OsNAC45 decreased the sensitivity of rice plants to ABA and over-expressing this gene had the opposite effect, which demonstrated that OsNAC45 played an important role during ABA signal responses. Knockout of OsNAC45 also resulted in more ROS accumulation in roots and increased sensitivity of rice to salt stress. Transcriptome sequencing assay found that thousands of genes were differently expressed in OsNAC45-knockout plants. Most of the down-regulated genes participated in plant stress responses. Quantitative real time RT-PCR suggested that seven genes may be regulated by OsNAC45 including OsCYP89G1, OsDREB1F, OsEREBP2, OsERF104, OsPM1, OsSAMDC2, and OsSIK1. Conclusions These results indicate that OsNAC45 plays vital roles in ABA signal responses and salt tolerance in rice. Further characterization of this gene may help us understand ABA signal pathway and breed rice plants that are more tolerant to salt stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pajaree Sonsungsan ◽  
Pheerawat Chantanakool ◽  
Apichat Suratanee ◽  
Teerapong Buaboocha ◽  
Luca Comai ◽  
...  

Salinity is an important environmental factor causing a negative effect on rice production. To prevent salinity effects on rice yields, genetic diversity concerning salt tolerance must be evaluated. In this study, we investigated the salinity responses of rice (Oryza sativa) to determine the critical genes. The transcriptomes of ‘Luang Pratahn’ rice, a local Thai rice variety with high salt tolerance, were used as a model for analyzing and identifying the key genes responsible for salt-stress tolerance. Based on 3' Tag-Seq data from the time course of salt-stress treatment, weighted gene co-expression network analysis was used to identify key genes in gene modules. We obtained 1,386 significantly differentially expressed genes in eight modules. Among them, six modules indicated a significant correlation within 6, 12, or 48h after salt stress. Functional and pathway enrichment analysis was performed on the co-expressed genes of interesting modules to reveal which genes were mainly enriched within important functions for salt-stress responses. To identify the key genes in salt-stress responses, we considered the two-state co-expression networks, normal growth conditions, and salt stress to investigate which genes were less important in a normal situation but gained more impact under stress. We identified key genes for the response to biotic and abiotic stimuli and tolerance to salt stress. Thus, these novel genes may play important roles in salinity tolerance and serve as potential biomarkers to improve salt tolerance cultivars.


2021 ◽  
Author(s):  
Qiming Chen ◽  
Huizhen Dong ◽  
Zhihua Xie ◽  
Kaijie Qi ◽  
Xiaosan Huang ◽  
...  

Abstract Background: Pear is one of the most abundant fruit crops and has been cultivated world-wide. However, the salt injury events caused by increased salinity limited the distribution and sustainable production of pear crops. Therefore, it is needed to take further efforts to understand the genetics and mechanisms of salt tolerance to improved salt resistance and productivity.Results: In this work, we analyzed the dynamic transcriptome of pear (Pyrus ussuriensis Maxim) under salt stress by using RNA-Seq and WGCNA. A total of 3540, 3831, 8374, 6267 and 5381 genes were identified that were differentially expressed after exposure to 200mM NaCl for 4, 6, 12, 24 and 48 hours, respectively, and 1163 genes were shared among the five comparisons. KEGG enrichment analysis of these DEGs (differentially expressed genes) revealed that “MAPK signaling” and “Plant hormone signal transduction” pathways were highly enriched. Meanwhile, 622 DEGs identified from WGCNA were highly correlated with these pathways, and some of them were able to indicate the salt tolerance of pear varieties. In addition, we provide a network to demonstrate the time-sequence of these co-expressed MAPK and hormone related genes.Conclusion: A comprehensive analysis about salt-responsive pear transcriptome were performed by using RNA-Seq and WGCNA. We demonstrated that “MAPK signaling” and “Plant hormone signal transduction” pathways were highly recruited during salt stress, and provided new insights into the metabolism of plant hormones related signaling at transcriptome level underlying salt resistance in pear. The dynamic transcriptome data obtained from this study and these salt-sensitive DEGs may provide potential genes as suitable targets for further biotechnological manipulation to improve pear salt tolerance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huanyong Li ◽  
Xiaoqian Tang ◽  
Xiuyan Yang ◽  
Huaxin Zhang

AbstractNitraria sibirica Pall., a typical halophyte that can survive under extreme drought conditions and in saline-alkali environments, exhibits strong salt tolerance and environmental adaptability. Understanding the mechanism of molecular and physiological metabolic response to salt stress of plant will better promote the cultivation and use of halophytes. To explore the mechanism of molecular and physiological metabolic of N. sibirica response to salt stress, two-month-old seedlings were treated with 0, 100, and 400 mM NaCl. The results showed that the differentially expressed genes between 100 and 400 mmol L−1 NaCl and unsalted treatment showed significant enrichment in GO terms such as binding, cell wall, extemal encapsulating structure, extracellular region and nucleotide binding. KEGG enrichment analysis found that NaCl treatment had a significant effect on the metabolic pathways in N. sibirica leaves, which mainly including plant-pathogen interaction, amino acid metabolism of the beta alanine, arginine, proline and glycine metabolism, carbon metabolism of glycolysis, gluconeogenesis, galactose, starch and sucrose metabolism, plant hormone signal transduction and spliceosome. Metabolomics analysis found that the differential metabolites between the unsalted treatment and the NaCl treatment are mainly amino acids (proline, aspartic acid, methionine, etc.), organic acids (oxaloacetic acid, fumaric acid, nicotinic acid, etc.) and polyhydric alcohols (inositol, ribitol, etc.), etc. KEGG annotation and enrichment analysis showed that 100 mmol L−1 NaCl treatment had a greater effect on the sulfur metabolism, cysteine and methionine metabolism in N. sibirica leaves, while various amino acid metabolism, TCA cycle, photosynthetic carbon fixation and sulfur metabolism and other metabolic pathways have been significantly affected by 400 mmol L−1 NaCl treatment. Correlation analysis of differential genes in transcriptome and differential metabolites in metabolome have found that the genes of AMY2, BAM1, GPAT3, ASP1, CML38 and RPL4 and the metabolites of L-cysteine, proline, 4-aminobutyric acid and oxaloacetate played an important role in N. sibirica salt tolerance control. This is a further improvement of the salt tolerance mechanism of N. sibirica, and it will provide a theoretical basis and technical support for treatment of saline-alkali soil and the cultivation of halophytes.


2019 ◽  
Vol 60 (8) ◽  
pp. 1829-1841 ◽  
Author(s):  
Guochun Wu ◽  
Sha Li ◽  
Xiaochuan Li ◽  
Yunhong Liu ◽  
Shuangshuang Zhao ◽  
...  

Abstract Alternative oxidase (AOX) has been reported to be involved in mitochondrial function and redox homeostasis, thus playing an essential role in plant growth as well as stress responses. However, its biological functions in nonseed plants have not been well characterized. Here, we report that AOX participates in plant salt tolerance regulation in moss Physcomitrella patens (P. patens). AOX is highly conserved and localizes to mitochondria in P. patens. We observed that PpAOX rescued the impaired cyanide (CN)-resistant alternative (Alt) respiratory pathway in Arabidopsis thaliana (Arabidopsis) aox1a mutant. PpAOX transcription and Alt respiration were induced upon salt stress in P. patens. Using homologous recombination, we generated PpAOX-overexpressing lines (PpAOX OX). PpAOX OX plants exhibited higher Alt respiration and lower total reactive oxygen species accumulation under salt stress condition. Strikingly, we observed that PpAOX OX plants displayed decreased salt tolerance. Overexpression of PpAOX disturbed redox homeostasis in chloroplasts. Meanwhile, chloroplast structure was adversely affected in PpAOX OX plants in contrast to wild-type (WT) P. patens. We found that photosynthetic activity in PpAOX OX plants was also lower compared with that in WT. Together, our work revealed that AOX participates in plant salt tolerance in P. patens and there is a functional link between mitochondria and chloroplast under challenging conditions.


2020 ◽  
Author(s):  
Jingjing Wang ◽  
Cong An ◽  
Hailin Guo ◽  
Xiangyang Yang ◽  
Jingbo Chen ◽  
...  

Abstract Background: Areas with saline soils are sparsely populated and have fragile ecosystems, which severely restricts the sustainable development of local economies. Zoysia grasses are recognized as excellent warm-season turfgrasses worldwide, with high salt tolerance and superior growth in saline-alkali soils. However, the mechanism underlying the salt tolerance of Zoysia species remains unknown. Results: The phenotypic and physiological responses of two contrasting materials, Zoysia japonica Steud. Z004 (salt sensitive) and Z011 (salt tolerant) in response to salt stress were studied. The results show that Z011 was more salt tolerant than was Z004, with the former presenting greater K+/Na+ ratios in both its leaves and roots. To study the molecular mechanisms underlying salt tolerance further, we compared the transcriptomes of the two materials at different time points (0 h, 1 h, 24 h, and 72 h) and from different tissues (leaves and roots) under salt treatment. The 24-h time point and the roots might make significant contributions to the salt tolerance. Moreover, GO and KEGG analyses of different comparisons revealed that the key DEGs participating in the salt-stress response belonged to the hormone pathway, various TF families and the DUF family. Conclusions: Z011 may have improved salt tolerance by reducing Na+ transport from the roots to the leaves, increasing K+ absorption in the roots and reducing K+ secretion from the leaves to maintain a significantly greater K+/Na+ ratio. Twenty-four hours might be a relatively important time point for the salt-stress response of zoysiagrass. The auxin signal transduction family, ABA signal transduction family, WRKY TF family and bHLH TF family may be the most important families in Zoysia salt-stress regulation. This study provides fundamental information concerning the salt-stress response of Zoysia and improves the understanding of molecular mechanisms in salt-tolerant plants.


2018 ◽  
Vol 19 (11) ◽  
pp. 3347 ◽  
Author(s):  
Yayun Wang ◽  
Hui Zhao ◽  
Hua Qin ◽  
Zixuan Li ◽  
Hai Liu ◽  
...  

The root plays an important role in the responses of plants to stresses, but the detailed mechanisms of roots in stress responses are still obscure. The GDP-mannose pyrophosphate synthetase (GMPase) OsVTC1-3 is a key factor of ascorbic acid (AsA) synthesis in rice roots. The present study showed that the transcript of OsVTC1-3 was induced by salt stress in roots, but not in leaves. Inhibiting the expression of OsVTC1-3 by RNA interfering (RI) technology significantly impaired the tolerance of rice to salt stress. The roots of OsVTC1-3 RI plants rapidly produced more O2−, and later accumulated amounts of H2O2 under salt stress, indicating the impaired tolerance of OsVTC1-3 RI plants to salt stress due to the decreasing ability of scavenging reactive oxygen species (ROS). Moreover, exogenous AsA restored the salt tolerance of OsVTC1-3 RI plants, indicating that the AsA synthesis in rice roots is an important factor for the response of rice to salt stress. Further studies showed that the salt-induced AsA synthesis was limited in the roots of OsVTC1-3 RI plants. The above results showed that specifically regulating AsA synthesis to scavenge ROS in rice roots was one of important factors in enhancing the tolerance of rice to salt stress.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Pibiao Shi ◽  
Minfeng Gu

Abstract Background Soil salinity is one of the major abiotic stress factors that affect crop growth and yield, which seriously restricts the sustainable development of agriculture. Quinoa is considered as one of the most promising crops in the future for its high nutrition value and strong adaptability to extreme weather and soil conditions. However, the molecular mechanisms underlying the adaptive response to salinity stress of quinoa remain poorly understood. To identify candidate genes related to salt tolerance, we performed reference-guided assembly and compared the gene expression in roots treated with 300 mM NaCl for 0, 0.5, 2, and 24 h of two contrasting quinoa genotypes differing in salt tolerance. Results The salt-tolerant (ST) genotype displayed higher seed germination rate and plant survival rate, and stronger seedling growth potential as well than the salt-sensitive (SS) genotype under salt stress. An average of 38,510,203 high-quality clean reads were generated. Significant Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified to deeper understand the differential response. Transcriptome analysis indicated that salt-responsive genes in quinoa were mainly related to biosynthesis of secondary metabolites, alpha-Linolenic acid metabolism, plant hormone signal transduction, and metabolic pathways. Moreover, several pathways were significantly enriched amongst the differentially expressed genes (DEGs) in ST genotypes, such as phenylpropanoid biosynthesis, plant-pathogen interaction, isoquinoline alkaloid biosynthesis, and tyrosine metabolism. One hundred seventeen DEGs were common to various stages of both genotypes, identified as core salt-responsive genes, including some transcription factor members, like MYB, WRKY and NAC, and some plant hormone signal transduction related genes, like PYL, PP2C and TIFY10A, which play an important role in the adaptation to salt conditions of this species. The expression patterns of 21 DEGs were detected by quantitative real-time PCR (qRT-PCR) and confirmed the reliability of the RNA-Seq results. Conclusions We identified candidate genes involved in salt tolerance in quinoa, as well as some DEGs exclusively expressed in ST genotype. The DEGs common to both genotypes under salt stress may be the key genes for quinoa to adapt to salinity environment. These candidate genes regulate salt tolerance primarily by participating in reactive oxygen species (ROS) scavenging system, protein kinases biosynthesis, plant hormone signal transduction and other important biological processes. These findings provide theoretical basis for further understanding the regulation mechanism underlying salt tolerance network of quinoa, as well establish foundation for improving its tolerance to salinity in future breeding programs.


2013 ◽  
Vol 40 (9) ◽  
pp. 759 ◽  
Author(s):  
John M. Cheeseman

The successful integration of activity in saline environments requires flexibility of responses at all levels, from genes to life cycles. Because plants are complex systems, there is no ‘best’ or ‘optimal’ solution and with respect to salt, glycophytes and halophytes are only the ends of a continuum of responses and possibilities. In this review, I briefly examine seven major aspects of plant function and their responses to salinity including transporters, secondary stresses, carbon acquisition and allocation, water and transpiration, growth and development, reproduction, and cytosolic function and ‘integrity’. I conclude that new approaches are needed to move towards understanding either organismal integration or ‘salt tolerance’, especially cessation of protocols dependent on sudden, often lethal, shock treatments and the embracing of systems level resources. Some of the tools needed to understand the integration of activity and even ‘salt stress’ are already in hand, such as those for whole-transcriptome analysis. Others, ranging from discovery studies of the nature of the cytosol to expanded tool kits for proteomic, metabolomic and epigenomic studies, still need to be further developed. After resurrecting the distinction between applied stress and the resultant strain and noting that with respect to salinity, the strain is manifest in changes at all -omic levels, I conclude that it should be possible to model and quantify stress responses.


Sign in / Sign up

Export Citation Format

Share Document