scholarly journals Analysis of connections and restrictions occurring due to the oscillations of vibrating screen working member and cantilevered screen deck

Author(s):  
Arkadii V. Iudin ◽  
◽  
Viktor S. Shestakov ◽  

Research relevance is due to the need of mining companies in a more complete extraction of mineral resources, reduction of crude minerals losses, and extension of deposits’ life. Some enterprises face the problem of complicated high-quality separation of hard-to-screen rock mass. Screen which are common in the industry often become clogged causing decline in the effectiveness of screening. Research aim is to determine the links, build resonant curves and analyze the amplitude oscillations of the working member and cantilevered bars of the screen deck using numerical simulation. Methodology includes the theoretical study of the dual mass oscillatory system with the use of numerical simulation. Results. The motion of the vibrating screen with circular oscillations of the working member, which includes the screen deck of a cascade type with cantilevered bars, is regarded as oscillation of a dual mass system. The amplitudes of oscillations of both masses make in-phase and anti-phase movements relative to the driving force of the drive. The analysis showed that the amplitudes of the working member are practically independent of the screen deck parameters, and bars oscillation amplitudes vary over a wide range. The expressions are given calculating the parameters of cantilevered bars and the values of the initial data of the GIT-51 screen. Resonance curves of amplitude and frequency relations are constructed. The conditions are established under which the oscillation amplitudes of the cantilevered bars take on hyperadmissible values; it is shown that for a particular oscillating system there is a transitional resonance value. Summary. The natural oscillation frequency ratio ranges are established of the entire system with the frequency of forced oscillations in which the oscillation amplitudes of cantilevered bars reach the specified parameters. It is shown that by changing the screen deck parameters at the design stage, it is possible to adjust the inter-frequency range and establish the operating mode of the screen.

Author(s):  
Dmitry Shprekher ◽  
◽  
Gennady Babokin ◽  
Alexandr Zelenkov ◽  
Dmitry Ovsyannikov ◽  
...  

The article proposes to study the dynamics of the scraper conveyor (SC), which is one of the main components of the mechanized complex of the coal face, to use a universal computer model in which the multi-mass system of the traction body (TB) with concentrated parameters is replaced by a script in the form of a MATLAB function, the code for modeling the system of equations of the TB in which is developed using the Matlab pro-gramming language. With the help of Simulink blocks, models of electric motors, transmissions, drive sprockets, as well as the elementary masses of TB are created. This solution made it possible to change the number of elementary masses in a wide range, and to ensure the study of dynamic processes in the electromechanical system of the SC with a predetermined accuracy. The most common type of multi-motor conveyor is considered: two-drive, with head and end drives connected through transmissions and sprockets by an infinite chain with scrapers. The simulation of the direct start modes at full load and empty load was carried out. The results showed that the proposed model provided 2 times faster simulation of the developed model compared to the model of a conveyor made up of the same number of individual elementary masses, while the accuracy of the simulation in terms of the speed of movement of the chain is 5% in the interval with the real conveyor. It is concluded that it is necessary to develop an effective method of controlling the head and tail drives of the scraper conveyor in order to equal their load. The results of the simulation can be used to predict the fatigue life and determine the optimal pretensioning force at an early design stage, when only a few design parameters are known.


Author(s):  
S. A. Sadovnikov

Introduction: Successful monitoring of environmental parameters requires the development of flexible software complexes with evolvable calculation functionality. Purpose: Developing a modular system for numerical simulation of atmospheric laser gas analysis. Results: Based on differential absorption method, a software system has been developed which provides the calculation of molecular absorption cross-sections, molecular absorption coefficients, atmospheric transmission spectra, and lidar signals. Absorption line contours are calculated using the Voigt profile. The prior information sources are HITRAN spectroscopic databases and statistical models of the distribution of temperature, pressure and gas components in the atmosphere. For modeling lidar signals, software blocks of calculating the molecular scattering coefficient and aerosol absorption/scattering coefficients were developed. For testing the applicability of various laser sources in the problems of environmental monitoring of the atmosphere, a concentration reconstruction error calculation block was developed for the atmospheric gas components, ignoring the interfering absorption of laser radiation by foreign gases. To verify the correct functioning of the software, a program block was developed for comparing the results of the modeling of atmospheric absorption and transmission spectra by using the standard SPECTRA information system. The discrepancy between the calculation of the atmospheric transmission spectra obtained using the developed system as compared to the SPECTRA results is less than 1%. Thus, a set of the presented program blocks allows you to carry out complex modeling of remote atmospheric gas analysis. Practical relevance: The software complex allows you to rapidly assess the possibilities of using a wide range of laser radiation sources for the problems of remote gas analysis.


Author(s):  
Michele Righi ◽  
Giacomo Moretti ◽  
David Forehand ◽  
Lorenzo Agostini ◽  
Rocco Vertechy ◽  
...  

AbstractDielectric elastomer generators (DEGs) are a promising option for the implementation of affordable and reliable sea wave energy converters (WECs), as they show considerable promise in replacing expensive and inefficient power take-off systems with cheap direct-drive generators. This paper introduces a concept of a pressure differential wave energy converter, equipped with a DEG power take-off operating in direct contact with sea water. The device consists of a closed submerged air chamber, with a fluid-directing duct and a deformable DEG power take-off mounted on its top surface. The DEG is cyclically deformed by wave-induced pressure, thus acting both as the power take-off and as a deformable interface with the waves. This layout allows the partial balancing of the stiffness due to the DEG’s elasticity with the negative hydrostatic stiffness contribution associated with the displacement of the water column on top of the DEG. This feature makes it possible to design devices in which the DEG exhibits large deformations over a wide range of excitation frequencies, potentially achieving large power capture in a wide range of sea states. We propose a modelling approach for the system that relies on potential-flow theory and electroelasticity theory. This model makes it possible to predict the system dynamic response in different operational conditions and it is computationally efficient to perform iterative and repeated simulations, which are required at the design stage of a new WEC. We performed tests on a small-scale prototype in a wave tank with the aim of investigating the fluid–structure interaction between the DEG membrane and the waves in dynamical conditions and validating the numerical model. The experimental results proved that the device exhibits large deformations of the DEG power take-off over a broad range of monochromatic and panchromatic sea states. The proposed model demonstrates good agreement with the experimental data, hence proving its suitability and effectiveness as a design and prediction tool.


Author(s):  
I Bridle ◽  
S R Woodhead

Degradation of bulk solid product during pneumatic conveying is of concern in a range of process industries. However, prediction of product degradation levels at the conveyor design stage has proved challenging. This paper presents a proposed prediction technique, based on the use of a pilot-sized test facility to provide relevant empirical data. The results of experiments undertaken using malted barley, basmati rice, and granulated sugar are reported. For each bulk solid material, a wide range of conveying conditions have been examined, consistent with common industrial practice. Correlations between predictions and experimental data obtained in an industrial-scale conveyor are presented and discussed.


1970 ◽  
Vol 24 (3) ◽  
pp. 479-502 ◽  
Author(s):  
R. L. Friedheim ◽  
J. B. Kadane

International arrangements for the uses of the ocean have been the subject of long debate within the United Nations since a speech made by Ambassador Arvid Pardo of Malta before the General Assembly in 1967. Issues in question include the method of delimiting the outer edge of the legal continental shelf; the spectrum of ocean arms control possibilities; proposals to create a declaration of principles governing the exploration for, and the exploitation of, seabed mineral resources with the promise that exploitation take place only if it “benefits mankind as a whole,” especially the developing states; and consideration of schemes to create international machinery to regulate, license, or own the resources of the seabed and subsoil. The discussions and debates began in the First (Political and Security) Committee of the 22nd General Assembly and proceeded through an ad hoc committee to the 23rd and 24th assembly plenary sessions. The creation of a permanent committee on the seabed as a part of the General Assembly's machinery attests to the importance members of the United Nations attribute to ocean problems. Having established the committee, they will be faced soon with the necessity of reaching decisions. The 24th General Assembly, for example, passed a resolution requesting the Secretary-General to ascertain members' attitudes on the convening of a new international conference to deal with a wide range of law of the sea problems.


Author(s):  
Aleš Tondl ◽  
Horst Ecker

Abstract The possibility of cancelling self-excited vibrations of a mechanical system using parametric excitation is discussed. A two-mass system is considered, with the top mass excited by a flow-generated self-exciting force. The parameter of the connecting stiffness between the base mass and the foundation is a harmonic function of time and represents a parametric excitation. For such a system general conditions for full vibration cancelling are derived and presented. By means of numerical simulation the system is investigated for several sets of parameters. The theoretical results are found to be in very good agreement with the results obtained by simulation. Parameter variations show the extent of the parameter space where significant vibration cancelling can be achieved and illustrate possible applications.


2001 ◽  
Author(s):  
X. Ai ◽  
B. Q. Li

Abstract Turbulent magnetically flows occur in a wide range of material processing systems involving electrically conducting melts. This paper presents a parallel higher order scheme for the direct numerical simulation of turbulent magnetically driven flows in induction channels. The numerical method is based on the higher order finite difference algorithm, which enjoys the spectral accuracy while minimizing the computational intensity. This, coupled with the parallel computing strategy, provides a very useful means to simulate turbulent flows. The higher order finite difference formulation of magnetically driven flow problems is described in this paper. The details of the parallel algorithm and its implementation for the simulations on parallel machines are discussed. The accuracy and numerical performance of the higher order finite difference scheme are assessed in comparison with the spectral method. The examples of turbulent magnetically driven flows in induction channels and pressure gradient driven flows in regular channels are given, and the computed results are compared with experimental measurements wherever possible.


Author(s):  
Gianmario L. Arnulfi ◽  
Carlo Cravero ◽  
Martino Marini

Natural gas carrying from production sites to users’ facilities is made by marine shipping in liquid phase or by terrestrial pumping in gaseous phase through long pipelines. In the latter case several storage stations are distributed along the pipeline nets to move the natural gas from its deposits to users’ terminals. Storage stations are set up to compensate seasonal fluctuations of the consumer demand versus methane supply, storing the gas in various kinds of reservoirs. In most of such plants centrifugal compressors are used, where the energy and the time that a complete charge takes are affected by the operation scheduling of the compressor from the minimum to the maximum storage levels. While the pressure in the reservoir enforces the instant operation pressure, the flow rate is limited within a quite wide range. Here an in-house code, based on the lumped parameter approach and a quasi-steady dynamics, is applied to a complete charge. The natural gas behavior is modeled by the pseudo-ideal gas in order to get a fair accuracy keeping the usual gas dynamics equations. The compression path has been parameterized and a multi objective optimization, embedding the simulation code, has been implemented to find the most suitable management of the compression station for the minimization of time and energy. The most significant paths are analyzed to pick out the effects of the compression strategy.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012118
Author(s):  
K V Khishchenko

Abstract An equation of state has been developed for rhodium in a wide range of changes in the specific volume and internal energy. The results of calculations of the thermodynamic characteristics of this metal are presented in comparison with the available experimental data at high pressures. This equation of state can be used in the numerical simulation of hydrodynamic processes under intense impulse influences on matter.


2021 ◽  
Vol 13 (17) ◽  
pp. 9591
Author(s):  
Sepehr Abrishami ◽  
Rocío Martín-Durán

The main goal of this study is to explore the adoption of a design for manufacturing and assembly (DfMA) and building information management (BIM) approach during the whole lifecycle of assets. This approach aims to tackle issues inherent in the design of traditional construction methods, such as low productivity and quality, poor predictability and building performance, and energy use, through the implementation of a BIM library of off-site components. In recent years, a renewed interest has been directed to the attempt to provide solutions to these urgent problems through the adoption of new advancements in technologies. However, while there are studies focussing on a BIM-DfMA approach, there is a lack of research regarding how this approach should be adopted during the whole lifecycle of the assets. Furthermore, to the best of our knowledge, defining an efficient way of developing a component-based BIM object library has not yet been included in any of the available studies. A mixed methodology approach has been used in this research. A conceptual framework was developed as the result of an extensive literature review to investigate new advancements in the AEC sector. Following the literature review, the framework was tested and validated through a case study based on the production and adoption of a BIM library of off-site components at the design stage of an asset. The architecture, engineering, and construction (AEC) industry has recognised the necessity of a new approach that helps to resolve the well-known issues presented in traditional methods of construction. The conceptual framework and case study proposed presents a valuable new method of construction that support the implementation of a BIM and DfMA approach, highlighting their benefits. This framework has been created using many valuable and reliable sources of information. The result of this research supports the idea of a novel new construction method that focuses on a manufacturing-digital-driven industry, with the use of DfMA in a BIM-integrated approach. This novel method will add significance and be beneficial for a wide range of aspects in the construction sector, contributing to the theoretical and practical domain.


Sign in / Sign up

Export Citation Format

Share Document