Anaerobic treatment of food waste in pilot scale

2016 ◽  
Vol 11 (4) ◽  
pp. 774-783 ◽  
Author(s):  
Alexsandro dos Santos Reis ◽  
Savia Gavazza ◽  
Simone Machado Santos

For this work, a pilot scale anaerobic digester was used to assess the treatability of food waste from a canteen. The digester was operated for 720 days, and its efficiency in removing organic matter and suspended solids as well as producing biogas were assessed. At the beginning of operation, the digester failed and alkalinity buffering was required until stabilization. A maximum chemical oxygen demand (COD) and total solids removal efficiency of 71% and 87% were, respectively, found for the organic loading rate of 0.59 kg COD m−3 d−1. The maximum gas production rate and specific gas production were 0.4 m3 m−3 d−1 and 0.76 m3 (kg TVS)−1, respectively, with a methane average of 60% in the biogas composition. Although achieving satisfactory levels of pollutant removal, the effluent characteristics particularly for COD and ammonia nitrogen indicated that recirculation is the best option to use effluent.

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 374
Author(s):  
Hongbo Feng ◽  
Honggang Yang ◽  
Jianlong Sheng ◽  
Zengrui Pan ◽  
Jun Li

Aerobic granular sludge (AGS) with oversized diameter commonly affects its stability and pollutant removal. In order to effectively restrict the particle size of AGS, a sequencing batch reactor (SBR) with a spiny aeration device was put forward. A conventional SBR (R1) and an SBR (R2) with the spiny aeration device treating tannery wastewater were compared in the laboratory. The result indicates that the size of the granular sludge from R2 was smaller than that from R1 with sludge granulation. The spines and air bubbles could effectively restrict the particle size of AGS by collision and abrasion. Nevertheless, there was no significant change in mixed liquor suspended solids (MLSS) and the sludge volume index (SVI) in either bioreactors. The removal (%) of chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N) in these two bioreactors did not differ from each other greatly. The analysis of biological composition displays that the proportion of Proteobacteria decreased slightly in R2. The X-ray fluorescence (XRF) analysis revealed less accumulation of Fe and Ca in smaller granules. Furthermore, a pilot-scale SBR with a spiny aeration device was successfully utilized to restrict the diameter of granules at about 300 μm.


2013 ◽  
Vol 33 (2) ◽  
pp. 367-378 ◽  
Author(s):  
Estevão Urbinati ◽  
Rose M. Duda ◽  
Roberto A. de Oliveira

In this study it was evaluated the effects of hydraulic retention time (HRT) and Organic Loading Rate (OLR) on the performance of UASB (Upflow Anaerobic Sludge Blanket) reactors in two stages treating residual waters of swine farming. The system consisted of two UASB reactors in pilot scale, installed in series, with volumes of 908 and 188 L, for the first and second stages (R1 and R2), respectively. The HRT applied in the system of anaerobic treatment in two stages (R1 + R2) was of 19.3, 29.0 and 57.9 h. The OLR applied in the R1 ranged from 5.5 to 40.1 kg CODtotal (m³ d)-1. The average removal efficiencies of chemical oxygen demand (COD) and total suspended solids (TSS) ranged, respectively, from 66.3 to 88.2% and 62.5 to 89.3% in the R1, and from 85.5 to 95.5% and 76.4 to 96.1% in the system (R1 + R2). The volumetric production of methane in the system (R1 + R2) ranged from 0.295 to 0.721 m³CH4 (m³ reactor d)-1. It was found that the OLR applied were not limiting to obtain high efficiencies of CODtotal and TSS removal and methane production. The inclusion of the UASB reactor in the second stage contributed to increase the efficiencies of CODtotal and TSS removal, especially, when the treatment system was submitted to the lowest HRT and the highest OLR.


2013 ◽  
Vol 69 (7) ◽  
pp. 1386-1394 ◽  
Author(s):  
C. T. M. J. Frijters ◽  
T. Jorna ◽  
G. Hesselink ◽  
J. Kruit ◽  
D. van Schaick ◽  
...  

Fat-containing food waste can be effectively treated in a new type of reactor, the so-called BIOPAQ-Anaerobic Flotation Reactor or BIOPAQ® anaerobic flotation reactor (AFR). In the reactor a flotation unit is integrated to retain the sludge. In this study results from two plants with a 430 and 511 m3-AFR, respectively, are presented. In one reactor, which is fed with water originating from different food liquid streams, over 99% of fat and oils were removed. Over 90% of the chemical oxygen demand (COD) was removed. When the last solids were removed from the effluent with a tilted plate settler, 98% COD removal was attained. The effluent concentrations of extractable hydrolysed and non-hydrolysed fats were less than 40 mg/l. Apparently the variations in the liquid streams deriving from the tank cleaning activities did not disturb the system. Only extremely high concentrations of fats could disturb the system, but the inhibition was reversible. In the reactor treating water from an ice-cream factory, which contained fats up to approximately 50% of influent COD, a COD removal efficiency of 90% was achieved. At volumetric loading rates varying from 1 to 8 kg COD/m3/d, biogas was produced at an average specific gas production of 0.69 m3/kg COD–removed.


2018 ◽  
Vol 78 (1) ◽  
pp. 49-56
Author(s):  
I. A. Sánchez ◽  
R. K. X. Bastos ◽  
E. A. T. Lana

Abstract In two pilot-scale experiments, fingerlings and juvenile of tilapia were reared in high rate algal pond (HRAP) effluent. The combination of three different total ammonia nitrogen (TAN) surface loading rates (SLR1 = 0.6, SLR2 = 1.2; SLR3 = 2.4 kg TAN·ha−1·d−1) and two fish stocking densities (D1 = 4 and D2 = 8 fish per tank) was evaluated during two 12-week experiments. Fingerlings total weight gain varied from 4.9 to 18.9 g, with the highest value (equivalent to 0.225 g·d−1) being recorded in SLR2-D1 treatment; however, high mortality (up to 67%) was recorded, probably due to sensitivity to ammonia and wide daily temperature variations. At lower water temperatures, juvenile tilapia showed no mortality, but very low weight gain. The fish rearing tanks worked as wastewater polishing units, adding the following approximate average removal figures on top of those achieved at the HRAP: 63% of total Kjeldahl nitrogen; 54% of ammonia nitrogen; 42% of total phosphorus; 37% of chemical oxygen demand; 1.1 log units of Escherichia coli.


2018 ◽  
Vol 78 (7) ◽  
pp. 1566-1575 ◽  
Author(s):  
S. S. Rathnaweera ◽  
B. Rusten ◽  
K. Korczyk ◽  
B. Helland ◽  
E. Rismyhr

Abstract A pilot-scale CFIC® (continuous flow intermittent cleaning) reactor was run in anoxic conditions to study denitrification of wastewater. The CFIC process has already proven its capabilities for biological oxygen demand removal with a small footprint, less energy consumption and low cost. The present study focused on the applicability for denitrification. Both pre-denitrification (pre-DN) and post-denitrification (post-DN) were tested. A mixture of primary treated wastewater and nitrified wastewater was used for pre-DN and nitrified wastewater with ethanol as a carbon source was used for post-DN. The pre-DN process was carbon limited and removal rates of only 0.16 to 0.74 g NOx-N/m²-d were obtained. With post-DN and an external carbon source, 0.68 to 2.2 g NO3-Neq/m²-d removal rates were obtained. The carrier bed functioned as a good filter for both the larger particles coming with influent water and the bio-solids produced in the reactor. Total suspended solids removal in the reactor varied from 20% to 78% (average 45%) during post-DN testing period and 9% to 70% (average 29%) for pre-DN. The results showed that the forward flow washing improves both the DN function and filtration ability of the reactor.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wei Kang ◽  
Xiyu Cui ◽  
Yanrui Cui ◽  
Linlin Bao ◽  
Kaili Ma

Abstract The discharge of wastewater containing both high salinity and high organic content without prior treatment is detrimental to aquatic life and water hygiene. In order to integrate the advantages of membrane treatment and biological treatment, and exert the phosphorus removal efficiency of dewatered alum sludge, in this study, an aerobic membrane reactor based on dehydrated alum sludge was used to treat mustard tuber wastewater with salinity of 6.8-7.3 % under the conditions of 30 °C, 20 kPa trans-membrane pressure (TMP) and chemical oxygen demand (COD) of 3300-3900 mg/L. Three replicate reactors were applied to assess the operational performance under different organic loading rate (OLR). The results showed that all reactors were effective in removing COD, ammonia nitrogen (NH4 +-N) and soluble phosphate (SP) under the conditions of 30 °C and 20 kPa of TMP. Meanwhile, the effluent concentration of COD, NH4 +-N and SP all increased while OLR was changed from 1.0 to 3.0 kg COD/m3/day, and the effluent COD and NH4 +-N concentration except for SP could reach the B-level of Chinese “Wastewater quality standards for discharge to municipal sewers” when OLR was less than 3.0 kg COD/m3/day. This indicates that dewatered alum sludge-based aerobic membrane reactor is a promising bio-measure for treating high salinity wastewater.


2021 ◽  
Vol 8 (12) ◽  
Author(s):  
Zhen-dong Zhao ◽  
Qiang Lin ◽  
Yang Zhou ◽  
Yu-hong Feng ◽  
Qi-mei Huang ◽  
...  

The development of efficient and low-cost wastewater treatment processes remains an important challenge. A microaerobic up-flow oxidation ditch (UOD) with micro-electrolysis by waterfall aeration was designed for treating real municipal wastewater. The effects of influential factors such as up-flow rate, waterfall height, reflux ratio, number of stages and iron dosing on pollutant removal were fully investigated, and the optimum conditions were obtained. The elimination efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH 4 + -N), total nitrogen (TN) and total phosphorus (TP) reached up to 84.33 ± 2.48%, 99.91 ± 0.09%, 93.63 ± 0.60% and 89.27 ± 1.40%, respectively, while the effluent concentrations of COD, NH 4 + -N, TN and TP were 20.67 ± 2.85, 0.02 ± 0.02, 1.39 ± 0.09 and 0.27 ± 0.02 mg l −1 , respectively. Phosphorous removal was achieved by iron–carbon micro-electrolysis to form an insoluble ferric phosphate precipitate. The microbial community structure indicated that carbon and nitrogen were removed via multiple mechanisms, possibly including nitrification, partial nitrification, denitrification and anammox in the UOD.


2000 ◽  
Vol 41 (3) ◽  
pp. 51-59 ◽  
Author(s):  
P. Battistoni ◽  
P. Pavan ◽  
J. Mata-Alvarez ◽  
M. Prisciandaro ◽  
F. Cecchi

In this paper experimental results on the anaerobic digestion of sewage sludge and organic fraction of municipal solid waste (OFMSW) by using a double phase process are reported. The long-term experiment has been carried out on a pilot scale plant, performed in different sets of operative conditions, during which granulometric distributions of particles in sludges and rheological properties of sludges were monitored. A significant fluidification of sludge was evidenced in the meso-thermo process, especially taking into account the variation in sludge behaviour from the first to the second phase. In the thermo-thermo process a fluidification higher than that shown in meso-thermo conditions is not observed, this suggesting that better results in terms of sludge conditioning can be obtained in a long time spent in thermophilic anaerobic digestion. Total volatile solids (TVS) and total fixed solids (TFS) become the most important parameters when mathematical modelling is applied to these processes.In the acidogenic phase, hydraulic retention time (HRT) and temperature are used to determine rigidity coefficient (RC), while only temperature is needed for yield stress (YC). Organic loading rate (OLR) and specific gas production (SGP) exert an important role in methanogenic phase description.


2019 ◽  
Vol 80 (6) ◽  
pp. 1145-1154
Author(s):  
Agyemang Richard Osei ◽  
Yacouba Konate ◽  
Felix Kofi Abagale

Abstract Constructed wetland technology is an innovative engineering technique for faecal sludge (FS) management. The presence of emergent macrophytes enhances the important processes of evapotranspiration, sludge mineralisation, and contaminant reduction. Consequently, selecting a species that can withstand the difficult sludge contaminated conditions within a local context is vital. This study monitored the pollutant removal potentials and growth dynamics of Bambusa vulgaris and Cymbopogon nardus as promising macrophytes for the constructed wetland technology in the Sudano-Sahelian context. The experiment, at pilot scale, consisted of plastic reactors (27 litre) filled with filter media of sand and fine gravels at the base, and planted with the selected species. Pollutant removal efficiencies were evaluated based on differences between influent and effluent concentrations, and physiological growth parameters of plant height, number of leaves and number of plants were monitored monthly. Total annual sludge loading rate of 31.4 and 103.4 kg TS/(m2·yr) (TS: total solids) were determined for FS + wastewater (acclimatisation phase) and FS load respectively. Both species recorded appreciable pollutant removal efficiency >80% for the organic (chemical oxygen demand), nutrients (PO43_P and NH4-N) and solid (total suspended solids and total volatile solids) contents. The species thus demonstrated satisfactory performance of resistance for faecal polluted wetland conditions.


2019 ◽  
Vol 9 (10) ◽  
pp. 1974 ◽  
Author(s):  
Zhixin Qi ◽  
Guoli Xiang ◽  
Deqi Xiong

A pilot-scale six-compartment hybrid anaerobic baffled reactor (HABR) with effective volume of 18 m3 was used to treat dyeing wastewater. The HABR system was able to treat the wastewater efficiently after FeSO4 pretreatment, as indicated by removal efficiencies of 33.7% for chemical oxygen demand (COD), 39.9% for suspended solid (SS), and 22.5% for sulfate (SO42−) during steadily operational period. Gas chromatography–mass spectrometry (GC-MS) showed that the concentrations of alkanes, amides, organic acids, ketones, phenols, and esters were much lower in the effluent than those in the influent; many high-molecular-weight compounds such as cyclanes, quinolines, and phenols were successfully transformed to low-molecular-weight ones. As illustrated from the results of generalized grey relational analysis (GGRA), COD removal efficiency was more closely associated with flow rate, organic loading rate (OLR), water temperature, and influent SS among the whole selected possible factors. Based on the overall treating effectiveness and the GGRA study, the optimized operation strategy of the dyeing wastewater treatment by HABR was obtained as the hydraulic retention time (HRT) of 12 h for steady-state operation with an up-flow velocity of 1.7 m/h as well as OLR of 1.5–2.0 kg COD/(m3·d).


Sign in / Sign up

Export Citation Format

Share Document