scholarly journals Preparation of activated charcoal adsorbent from pitombeira seeds (Talisia esculenta) and its application for Ca2+ ions removal

Author(s):  
J. C. Mendonça ◽  
L. B. Cantanhede ◽  
M. O. A. I. Rojas ◽  
J. H. G. Rangel ◽  
C. W. B. Bezerra

Abstract Water quality that the population has access to can undergo a series of changes, contaminations and interferences. The poor water quality may be related to several contaminations sources and can pose a health risk for ecosystem and for people. Calcium ion is a determinant of water hardness, and its excess in the human body can result in a series of complications and diseases such as renal and bladder lithiasis. The seeds of the Pitombeira (Talisia esculenta) were used to produce phosphoric acid activated carbon (PAC). Adsorption studies were conducted by batch technique, and isothermal and kinetic models were systematically used to evaluate the potential of PAC to remove Ca2+ ions from the aqueous media. The adsorbent was characterized using BET surface area (141.6 m2/g), SEM, pHPZC (2,75), Boehm titration, and by content analysis of the moisture and ashes. The time required for the system to equilibrate was only 5 min. According to the kinetics study, the data were the best fit by the pseudo-second-order model, while the equilibrium sorption data fitted well with the Freundlich's model, with a maximum adsorption capacity of 19.05 mg/g, with 90% of Ca2+ ions removal. Therefore, due to its efficiency and low-cost, PAC could be employed as an alternative adsorbent for Ca2+ removal.

2019 ◽  
Vol 233 (9) ◽  
pp. 1275-1292 ◽  
Author(s):  
Atta ul Haq ◽  
Muhammad Rasul Jan ◽  
Jasmin Shah ◽  
Maria Sadia ◽  
Muhammad Saeed

Abstract The presence of heavy metals in water causes serious problems and their treatment before incorporating into the water body is a challenge for researchers. The present study was conducted to compare the sorption study of Ni (II) using silica gel, amberlite IR-120 and sawdust of mulberry wood in batch system under the influence of pH, initial Ni (II) concentration and contact time. It was observed that sorption process was depending upon pH and maximum sorption was achieved at pH 7.0. Kinetic data were well fitted into pseudo-second order kinetic model due to high R2 values and closeness of experimental sorption capacity and calculated sorption capacity of pseudo-second order. Isotherms study showed that Langmuir is one of the most suitable choices to explain sorption data due to high R2 values. The monolayer sorption capacities of silica gel, amberlite IR-120 and sawdust were found to be 33.33, 25.19, and 33.67 mg g−1, respectively. Desorption study revealed that NaCl is one of the most appropriate desorbent. It may be concluded from this study that sawdust is a suitable sorbent due to low cost, abundant availability and recycling of the materials for further study.


2012 ◽  
Vol 14 (2) ◽  
pp. 1-8 ◽  
Author(s):  
S. Ghadiri ◽  
R. Nabizadeh ◽  
A. Mahvi ◽  
S. Nasseri ◽  
A. Mesdaghinia ◽  
...  

Potential of granulated modified nanozeolites Y for MTBE removal from aqueous solutions: Kinetic and isotherm studies Adsorption of methyl tert-butyl ether (MTBE) from aqueous solutions by granulated modified nanozeolites Y was investigated. Nanozeolite Y powders were converted into granulated zeolites and subsequently modified with two cationic surfactants (20 mmol/dm3), to be used as adsorbent. Granulated nanozeolites were characterized by BET surface area analysis, elemental analysis and X-ray diffractometer. -Hexade-cyltrimethylammonium (HDTMA-Cl) modified granulated zeolite had more effective performance than N-cetylpyridinium bromide (CPB) modified granulated zeolite. The most conventional adsorption isotherms and kinetic models were applied to describe MTBE adsorption and reaction dynamic, respectively. The equilibrium sorption data fitted the Langmuir 2 isotherm model and the kinetic study was followed the pseudo-second-order model. The maximum adsorption capacities for HDTMA-Cl modified zeolite and CPB modified granulated zeolite were 333.33 and 142.8 mg/g, respectively as calculated by the Langmuir model. This study demonstrated that the removal of mtbe by granulated modified nanozeolites Y is a promising technique.


2018 ◽  
Vol 77 (5) ◽  
pp. 1313-1323 ◽  
Author(s):  
Jianjun Zhou ◽  
Xionghui Ji ◽  
Xiaohui Zhou ◽  
Jialin Ren ◽  
Yaochi Liu

Abstract A novel magnetic bio-adsorbent (MCIA) was developed, characterized and tested for its Cd(II) removal from aqueous solution. MCIA could be easily separated from the solution after equilibrium adsorption due to its super-paramagnetic property. The functional and magnetic bio-material was an attractive adsorbent for the removal of Cd(II) from aqueous solution owing to the abundant adsorption sites, amino-group and oxygen-containing groups on the surface of Cyclosorus interruptus. The experimental results indicated that the MCIA exhibited excellent adsorption ability and the adsorption process was spontaneous and endothermic. The adsorption isotherm was consistent with the Langmuir model. The adsorption kinetic fitted the pseudo-second-order model very well. The maximum adsorption capacity of Cd(II) onto MCIA was 40.8, 49.4, 54.6 and 56.6 mg/g at 293, 303, 313 and 323 K, respectively. And the MCIA exhibited an excellent reusability and impressive regeneration. Therefore, MCIA could serve as a sustainable, efficient and low-cost magnetic adsorbent for Cd(II) removal from aqueous solution.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Joshua N. Edokpayi ◽  
Samson O. Alayande ◽  
Ahmed Adetoro ◽  
John O. Odiyo

In this study, the potential for pulverized raw macadamia nut shell (MNS) for the sequestration of methylene blue from aqueous media was assessed. The sorbent was characterized using scanning electron microscopy for surface morphology, functional group analysis was performed with a Fourier-transform infrared spectrometer (FT-IR), and Brunauer–Emmett–Teller (BET) isotherm was used for surface area elucidation. The effects of contact time, sorbent dosage, particle size, pH, and change in a solution matrix were studied. Equilibrium data were fitted using Temkin, Langmuir, and Freundlich adsorption isotherm models. The sorption kinetics was studied using the Lagergren pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models. The feasibility of the study was established from the thermodynamic studies. A surface area of 2.763 m2/g was obtained. The equilibrium and kinetics of sorption was best described by the Langmuir and the pseudo-second-order models, respectively. The sorption process was spontaneous (−ΔG0=28.72−31.77 kJ/mol) and endothermic in nature (ΔH0=17.45 kJ/mol). The positive value of ΔS0 (0.15 kJ/molK) implies increased randomness of the sorbate molecules at the surface of the sorbent. This study presents sustainable management of wastewater using MNS as a potential low-cost sorbent for dye decontamination from aqueous solution.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Preeti S. Kulkarni ◽  
Varuna S. Watwe ◽  
Abubakar J. Hipparge ◽  
Sana I. Sayyad ◽  
Rutika A. Sonawane ◽  
...  

AbstractThe potential of uncharred biomaterial derived from dry leaves of Ficusbenjamina (Family: Moraceae,local name: Weeping Fig) plant to remove Cr(VI) from aqueous samples was investigated. In the present work, treatment of dilute acids was used for activating the adsorption centres on the biomass instead of cumbersome charring process. The plant material was characterized using FT-IR, FE-SEM and EDX. Various influencing factors such as pH of equilibrating solution, contact time, Cr (VI) concentrations, adsorbent dose and temperature were optimized to obtain maximum sorption efficacy. The interactions among the biomaterial and Cr (VI) in water were studied by fitting the sorption data in four different adsorption isotherms. The data fitting and experimental evidences indicated formation of monolayer of Cr(VI) over the biomass surface. The process followed pseudo-second order kinetics and was thermodynamically spontaneous under laboratory conditions and reached equilibrium in 24 hours. Maximum adsorption capacity of 56.82 mg/g was obtained at the pH 2 when the concentration before adsorption was 200 mg L−1 of Cr(VI) with 24 hours of equilibration time and 2.50 g L−1 of dose of biomaterial at room temperature. The sorption efficiency was found to be better than many charred bio-based materials.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1372 ◽  
Author(s):  
Lorena Alcaraz ◽  
María Esther Escudero ◽  
Francisco José Alguacil ◽  
Irene Llorente ◽  
Ana Urbieta ◽  
...  

This paper describes the physicochemical study of the adsorption of dysprosium (Dy3+) in aqueous solution onto two types of activated carbons synthesized from spent coffee ground. Potassium hydroxide (KOH)-activated carbon is a microporous material with a specific Brunauer–Emmett–Teller (BET) surface area of 2330 m2·g−1 and pores with a diameter of 3.2 nm. Carbon activated with water vapor and N2 is a solid mesoporous, with pores of 5.7 nm in diameter and a specific surface of 982 m2·g−1. A significant dependence of the adsorption capacity on the solution pH was found, but it does not significantly depend on the dysprosium concentration nor on the temperature. A maximum adsorption capacity of 31.26 mg·g−1 and 33.52 mg·g−1 for the chemically and physically activated carbons, respectively, were found. In both cases, the results obtained from adsorption isotherms and kinetic study were better a fit to the Langmuir model and pseudo-second-order kinetics. In addition, thermodynamic results indicate that dysprosium adsorption onto both activated carbons is an exothermic, spontaneous, and favorable process.


2017 ◽  
Vol 36 (1-2) ◽  
pp. 372-392 ◽  
Author(s):  
Borano Te ◽  
Boonchai Wichitsathian ◽  
Chatpet Yossapol ◽  
Watcharapol Wonglertarak

In this study, natural clay, iron oxide, and iron powder were combined to develop low-cost iron mixed porous pellet adsorbent for arsenate and arsenite removal from aqueous solution in batch experiments. The augmented simplex centroid mixture design was applied to obtain the optimum proportion of each constituent. Higher correlation coefficient of the models (R2 > 0.95), good distribution of residuals, and lower values of p value (<0.05) indicated that the method is suitable for determining the optimum mixture proportion. Extensive decrease of both arsenate and arsenite adsorption occurred in the alkaline condition (pH > 9). Kinetic and isotherm experimental data of both arsenate and arsenite were well described by the pseudo-second order and Sips models, respectively. The maximum adsorption capacity of arsenate and arsenite derived from Sips model were 13.33 and 19.06 mg/g, respectively. The separation and heterogeneity factors showed that both arsenate and arsenite were favorably adsorbed. Among coexisting anions, phosphate significantly showed negative effect on the adsorption of either arsenate or arsenite. The adsorbent could be effectively reused for several times after its regeneration and was considered as non-hazardous material after adsorption.


Clay Minerals ◽  
2012 ◽  
Vol 47 (1) ◽  
pp. 31-44 ◽  
Author(s):  
G. A. Ikhtiyarova ◽  
A. S. Özcan ◽  
Ö. Gök ◽  
A. Özcan

AbstractIn this study, natural bentonite was modified with hexadecyltrimethylammonium (HDTMA) bromide to obtain organobentonite (HDTMA-bentonite). Bentonite and HDTMA-bentonite were then characterized using XRD, XRF, SEM, FT-IR, thermogravimetric (TG) analysis, elemental analysis and Brunauer-Emmett-Teller (BET) surface area techniques. The HDTMA+ cation was found to be located on the surface and enters the interlayer spaces of smectite according to the XRD and SEM results. FT-IR spectra indicated the existence of HDTMA functional groups on the bentonite surface. The BET surface area significantly decreased after the modification due to the coverage of the pores of natural bentonite. After the characterization, the adsorption of a textile dye, Reactive Blue 19 (RB19), onto bentonite and HDTMA-bentonite was investigated. The maximum adsorption capacity of HDTMA-bentonite for RB19 was 502 mg g-1 at 20°C. The adsorption process followed a pseudo-second-order kinetic model and it was exothermic and physical in nature.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Ankur Gupta ◽  
Chandrajit Balomajumder

Fe modified rice husk was prepared as a low cost biosorbent for the removal of Cr(VI) and phenol both singly and in combination from single and binary simulated synthetic waste water. Rice husk was modified by treating with FeSO4·7H2O. The results showed that impregnation of iron onto the surface of rice husk improved the adsorption capability of both Cr(VI) and phenol. The effects of process parameters for multicomponent system such as pH, adsorbent dose, and contact time onto the percentage removal of both Cr(VI) and phenol were investigated. The experimental data for the adsorption of both Cr(VI) and phenol onto the surface of Fe modified rice husk applied to various kinetic and adsorption isotherm models. Multicomponent isotherm models such as Nonmodified Langmuir, Modified Langmuir, Extended Langmuir, Extended Freundlich, Competitive Nonmodified Redlich Peterson, Competitive Modified Redlich Peterson were applied. The results show that Extended Freundlich model best described the experimental data for both Cr(VI) and phenol from binary solution. Pseudo second-order model agreed well with Cr(VI) while pseudo first-order model agreed well with phenol. Maximum adsorption capacity in synthetic binary solution of Cr(VI) and phenol was found to be 36.3817 mg g−1for Cr(VI) and 6.569 mg g−1for phenol, respectively.


2012 ◽  
Vol 65 (8) ◽  
pp. 1341-1349 ◽  
Author(s):  
Shokooh Sadat Khaloo ◽  
Amir Hossein Matin ◽  
Sahar Sharifi ◽  
Masoumeh Fadaeinia ◽  
Narges Kazempour ◽  
...  

The application of almond shell as a low cost natural adsorbent to remove Hg2+ from aqueous solution was investigated. Batch experiments were carried out to evaluate the adsorption capacity of the material. The chemical and physical parameters such as pH, sorbent amount, initial ion concentration, and contact time were optimized for the maximum uptake of mercury onto the solid surface. Adsorption isotherms were expressed by Langmuir and Freundlich adsorption models, and the experimental data were found to fit the Langmuir model rather than the Freundlich. The maximum adsorption capacity obtained from the Langmuir isotherm was 135.13 mg/g. A kinetic study was carried out with pseudo-first-order and pseudo-second-order reaction equations and it was found that the Hg2+ uptake process followed the pseudo-second-order rate expression. The thermodynamic values, ΔG0, ΔH0 and ΔS0, indicated that adsorption was an endothermic and spontaneous process. The potential of this material for mercury elimination was demonstrated by efficient Hg2+ removal from a synthetic effluent.


Sign in / Sign up

Export Citation Format

Share Document