B7-H3 Immune Checkpoint Protein in Human Cancer

2020 ◽  
Vol 27 (24) ◽  
pp. 4062-4086 ◽  
Author(s):  
Karine Flem-Karlsen ◽  
Øystein Fodstad ◽  
Caroline E. Nunes-Xavier

B7-H3 belongs to the B7 family of immune checkpoint proteins, which are important regulators of the adaptive immune response and emerging key players in human cancer. B7-H3 is a transmembrane protein expressed on the surface of tumor cells, antigen presenting cells, natural killer cells, tumor endothelial cells, but can also be present in intra- and extracellular vesicles. Additionally, B7-H3 may be present as a circulating soluble isoform in serum and other body fluids. B7-H3 is overexpressed in a variety of tumor types, in correlation with poor prognosis. B7-H3 is a promising new immunotherapy target for anti-cancer immune response, as well as a potential biomarker. Besides its immunoregulatory role, B7-H3 has intrinsic pro-tumorigenic activities related to enhanced cell proliferation, migration, invasion, angiogenesis, metastatic capacity and anti-cancer drug resistance. B7-H3 has also been found to regulate key metabolic enzymes, promoting the high glycolytic capacity of cancer cells. B7-H3 receptors are still not identified, and little is known about the molecular mechanisms underlying B7-H3 functions. Here, we review the current knowledge on the involvement of B7-H3 in human cancer.

Author(s):  
Gregory Lee

Two monoclonal antibodies, RP215 and GHR106, were selected, respectively, for the research and development of anti-cancer drugs targeting ovarian cancer and other types of human cancer. RP215 was shown to react with a carbohydrate-associated epitope located mainly in the variable regions of immunoglobulin heavy chains expressed on the surface of almost all cancer cells in humans. GHR106 was generated against a synthetic peptide corresponding to N1-29 amino acid residues in the extracellular domains of human GnRH receptor, which is surface-expressed by most cancer cells as well as the anterior pituitary. This monoclonal antibody was shown to serve as a bioequivalent analog to GnRH-derived decapeptides currently used clinically. The molecular mechanisms of action of these two antibody-based anti-cancer drug candidates were well elucidated following numerous biochemical, immunological, and molecular biological studies, mainly by using ovarian cancer as the model. Further preclinical studies with humanized forms of these two antibodies are essential.


2021 ◽  
Vol 14 (1) ◽  
pp. 41
Author(s):  
Hana Votavova ◽  
Zuzana Urbanova ◽  
David Kundrat ◽  
Michaela Dostalova Merkerova ◽  
Martin Vostry ◽  
...  

Deferasirox (DFX) is an oral iron chelator used to reduce iron overload (IO) caused by frequent blood cell transfusions in anemic myelodysplastic syndrome (MDS) patients. To study the molecular mechanisms by which DFX improves outcome in MDS, we analyzed the global gene expression in untreated MDS patients and those who were given DFX treatment. The gene expression profiles of bone marrow CD34+ cells were assessed by whole-genome microarrays. Initially, differentially expressed genes (DEGs) were determined between patients with normal ferritin levels and those with IO to address the effect of excessive iron on cellular pathways. These DEGs were annotated to Gene Ontology terms associated with cell cycle, apoptosis, adaptive immune response and protein folding and were enriched in cancer-related pathways. The deregulation of multiple cancer pathways in iron-overloaded patients suggests that IO is a cofactor favoring the progression of MDS. The DEGs between patients with IO and those treated with DFX were involved predominantly in biological processes related to the immune response and inflammation. These data indicate DFX modulates the immune response mainly via neutrophil-related genes. Suppression of negative regulators of blood cell differentiation essential for cell maturation and upregulation of heme metabolism observed in DFX-treated patients may contribute to the hematopoietic improvement.


Molecules ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 193 ◽  
Author(s):  
Yasuyoshi Miyata ◽  
Yohei Shida ◽  
Tomoaki Hakariya ◽  
Hideki Sakai

Prostate cancer is the most common cancer among men. Green tea consumption is reported to play an important role in the prevention of carcinogenesis in many types of malignancies, including prostate cancer; however, epidemiological studies show conflicting results regarding these anti-cancer effects. In recent years, in addition to prevention, many investigators have shown the efficacy and safety of green tea polyphenols and combination therapies with green tea extracts and anti-cancer agents in in vivo and in vitro studies. Furthermore, numerous studies have revealed the molecular mechanisms of the anti-cancer effects of green tea extracts. We believe that improved understanding of the detailed pathological roles at the molecular level is important to evaluate the prevention and treatment of prostate cancer. Therefore, in this review, we present current knowledge regarding the anti-cancer effects of green tea extracts in the prevention and treatment of prostate cancer, with a particular focus on the molecular mechanisms of action, such as influencing tumor growth, apoptosis, androgen receptor signaling, cell cycle, and various malignant behaviors. Finally, the future direction for the use of green tea extracts as treatment strategies in patients with prostate cancer is introduced.


2019 ◽  
Vol 17 (1) ◽  
pp. 57-67
Author(s):  
Yepeng Luan ◽  
Jinyi Liu ◽  
Jianjun Gao ◽  
Jinhua Wang

Background: Cancer incidence and mortality have been increasing and cancer is still the leading cause of death all over the world. Despite the enormous progress in cancer treatment, many patients died of ineffective chemotherapy and drug resistance. Therefore, the design and development of anti-cancer drugs with high efficiency and low toxicity is still one of the most challenging tasks. Tricyclic heterocycles, such as phenothiazine, are always important sources of scaffolds for anti-cancer drug discovery. Methods: In this work, ten new urea-containing derivatives of phenothiazine coupled with different kinds of amine motifs at the endpoint through a three carbon long spacer were designed and synthesized. The structures of the synthesized compounds were elucidated and confirmed by 1H NMR and HRMS. All the synthesized compounds were tested for their antitumor activity in vitro against the proliferation of PC-3 cells, and the compounds with best potency entered further cytotoxicity evaluations against other 22 human tumor cell lines. Mechanism was also studied. Results: From all data, it showed that among all 10 target compounds, TTi-2 showed the best effect in inhibiting the proliferation of 23 human cancer cell lines while TTi-2 without obvious inhibitory effect on normal cell. Furthermore, our results also showed that TTi-2 could inhibit migration, invasion and colony formation of MDA-MB-231 cells. Finally, TTi-2 can induce arrest of cell cycle at G0/G1 phase and cell apoptosis by activating the caspase 3 activity. Conclusion: All these results suggested that TTi-2 might be used as a promising lead compound for anticancer drug development.


2011 ◽  
Vol 120 (10) ◽  
pp. 441-450 ◽  
Author(s):  
Alessandro Lambiase ◽  
Alessandra Micera ◽  
Marta Sacchetti ◽  
Flavio Mantelli ◽  
Stefano Bonini

The ocular surface is the first line of defence in the eye against environmental microbes. The ocular innate immune system consists of a combination of anatomical, mechanical and immunological defence mechanisms. TLRs (Toll-like receptors), widely expressed by the ocular surface, are able to recognize microbial pathogens and to trigger the earliest immune response leading to inflammation. Increasing evidence highlights the crucial role of TLRs in regulating innate immune responses during ocular surface infective and non-infective inflammatory conditions. In addition, recent observations have shown that TLRs modulate the adaptive immune response, also playing an important role in ocular autoimmune and allergic diseases. One of the main goals of ocular surface treatment is to control the inflammatory reaction in order to preserve corneal integrity and transparency. Recent experimental evidence has shown that specific modulation of TLR pathways induces an improvement in several ocular inflammatory conditions, such as allergic conjunctivitis, suggesting new therapeutic anti-inflammatory strategies. The purpose of the present review is to summarize the current knowledge of TLRs at the ocular surface and to propose them as potential targets of therapy for ocular inflammatory conditions.


Sarcoma ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
William W. Tseng ◽  
Shruti Malu ◽  
Minying Zhang ◽  
Jieqing Chen ◽  
Geok Choo Sim ◽  
...  

Treatment options are limited in well differentiated (WD) and dedifferentiated (DD) retroperitoneal liposarcoma. We sought to study the intratumoral adaptive immune response and explore the potential feasibility of immunotherapy in this disease. Tumor-infiltrating lymphocytes (TILs) were isolated from fresh surgical specimens and analyzed by flow cytometry for surface marker expression. Previously reported immune cell aggregates known as tertiary lymphoid structures (TLS) were further characterized by immunohistochemistry. In all fresh tumors, TILs were found. The majority of TILs were CD4 T cells; however cytotoxic CD8 T cells were also seen (average: 20% of CD3 T cells). Among CD8 T cells, 65% expressed the immune checkpoint molecule PD-1. Intratumoral TLS may be sites of antigen presentation as DC-LAMP positive, mature dendritic cells were found juxtaposed next to CD4 T cells. Clinicopathologic correlation, however, demonstrated that presence of TLS was associated with worse recurrence-free survival in WD disease and worse overall survival in DD disease. Our data suggest that an adaptive immune response is present in WD/DD retroperitoneal liposarcoma but may be hindered by TLS, among other possible microenvironmental factors; further investigation is needed. Immunotherapy, including immune checkpoint blockade, should be evaluated as a treatment option in this disease.


2021 ◽  
Vol 8 ◽  
Author(s):  
Marcella Massimini ◽  
Mariarita Romanucci ◽  
Raffaella De Maria ◽  
Leonardo Della Salda

Canine tumors are valuable comparative models for human counterparts, especially to explore novel biomarkers and to understand pathways and processes involved in metastasis. Vasculogenic mimicry (VM) is a unique property of malignant cancer cells which promote metastasis. Thus, it represents an opportunity to investigate both the molecular mechanisms and the therapeutic targets of a crucial phenotypic malignant switch. Although this biological process has been largely investigated in different human cancer types, including osteosarcoma, it is still largely unknown in veterinary pathology, where it has been mainly explored in canine mammary tumors. The presence of VM in human osteosarcoma is associated with poor clinical outcome, reduced patient survival, and increased risk of metastasis and it shares the main pathways involved in other type of human tumors. This review illustrates the main findings concerning the VM process in human osteosarcoma, search for the related current knowledge in canine pathology and oncology, and potential involvement of multiple pathways in VM formation, in order to provide a basis for future investigations on VM in canine tumors.


2021 ◽  
Author(s):  
Yi Wang ◽  
Xiaoxia Wang ◽  
Laurence Don Wai Luu ◽  
Shaojin Chen ◽  
Jin Fu ◽  
...  

CoronaVac (Sinovac), an inactivated vaccine for SARS-CoV-2, has been widely used for immunization. However, analysis of the underlying molecular mechanisms driving CoronaVac-induced immunity is still limited. Here, we applied a systems biology approach to understand the mechanisms behind the adaptive immune response to CoronaVac in a cohort of 50 volunteers immunized with 2 doses of CoronaVac. Vaccination with CoronaVac led to an integrated immune response that included several effector arms of the adaptive immune system including specific IgM/IgG, humoral response and other immune response, as well as the innate immune system as shown by complement activation. Metabolites associated with immunity were also identified implicating the role of metabolites in the humoral response, complement activation and other immune response. Networks associated with the TCA cycle and amino acids metabolic pathways, such as phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and glycine, serine and threonine metabolism were tightly coupled with immunity. Critically, we constructed a multifactorial response network (MRN) to analyze the underlying interactions and compared the signatures affected by CoronaVac immunization and SARS-CoV-2 infection to further identify immune signatures and related metabolic pathways altered by CoronaVac immunization. These results suggest that protective immunity against SARS-CoV-2 can be achieved via multiple mechanisms and highlights the utility of a systems biology approach in defining molecular correlates of protection to vaccination.


F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 9 ◽  
Author(s):  
Tomas Koltai

Objective:To review the mechanisms of anti-cancer activity of nelfinavir and other protease inhibitors (PIs) based on evidences reported in the published literature.Methods:We extensively reviewed the literature concerning nelfinavir (NFV) as an off target anti-cancer drug and other PIs. A classification of PIs based on anti-cancer mode of action was proposed. Controversies regarding nelfinavir mode of action were also addressed.Conclusions:The two main mechanisms involved in anti-cancer activity are endoplasmic reticulum stress-unfolded protein response pathway and Akt inhibition. However there are many other effects, partially dependent and independent of those mentioned, that may be useful in cancer treatment, including MMP-9 and MMP-2 inhibition, down-regulation of CDK-2, VEGF, bFGF, NF-kB, STAT-3, HIF-1 alfa, IGF, EGFR, survivin, BCRP, androgen receptor, proteasome, fatty acid synthase (FAS), decrease in cellular ATP concentration and upregulation of TRAIL receptor DR5, Bax, increased radiosensitivity, and autophagy. The end result of all these effects is slower growth, decreased angiogenesis, decreased invasion and increased apoptosis, which means reduced proliferation and increased cancer cells death.PIs may be classified according to their anticancer activity at clinically achievable doses, in AKT inhibitors, ER stressors and Akt inhibitors/ER stressors.Beyond the phase I trials that have been recently completed, adequately powered and well-designed clinical trials are needed in the various cancer type settings, and specific trials where NFV is tested in association with other known anti-cancer pharmaceuticals should be sought, in order to find an appropriate place for NFV in cancer treatment.The analysis of controversies on the molecular mechanisms of NFV hints to the possibility that NFV works in a different way in tumor cells and in hepatocytes and adipocytes.


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 278 ◽  
Author(s):  
Bu Choi

Apple is a rich source of bioactive phytochemicals that help improve health by preventing and/or curing many disease processes, including cancer. One of the apple polyphenols is phloretin [2′,4′,6′-Trihydroxy-3-(4-hydroxyphenyl)-propiophenone], which has been widely investigated for its antioxidant, anti-inflammatory and anti-cancer activities in a wide array of preclinical studies. The efficacy of phloretin in suppressing xenograft tumor growth in athymic nude mice implanted with a variety of human cancer cells, and the ability of the compound to interfere with cancer cells signaling, have made it a promising candidate for anti-cancer drug development. Mechanistically, phloretin has been reported to arrest the growth of tumor cells by blocking cyclins and cyclin-dependent kinases and induce apoptosis by activating mitochondria-mediated cell death. The blockade of the glycolytic pathway via downregulation of GLUT2 mRNA and proteins, and the inhibition of tumor cells migration, also corroborates the anti-cancer effects of phloretin. This review sheds light on the molecular targets of phloretin as a potential anti-cancer and anti-inflammatory natural agent.


Sign in / Sign up

Export Citation Format

Share Document