Therapeutic potential of non-coding RNAs and TLR signalling pathways in Rheumatoid arthritis

Author(s):  
Jingjing Liu ◽  
Xiaoxu Wang ◽  
Shufeng Wang ◽  
Fengxia Liu

Background: Rheumatoid arthritis (RA) is a common connective tissue disease, characteristic of chronic and invasive synovitis in single or multiple joints and vasculitis. RA is a heterogeneous disease with unclear pathogenesis. Therefore, exploring the etiology and pathogenesis of the disease is essential for identifying new promising treatment strategy for RA. Accumulated data have implicated the significant role of non-coding RNA in RA, some of which are demonstrated to regulate inflammation and autoimmunity in RA through toll-like receptor (TLR) signaling pathway. To clarify the mechanism of non-coding RNA regulating the generation of proinflammatory mediators is helpful for understanding the pathogenesis of RA. Moreover, these well established non-coding RNAs can serve as novel biotargets for RA diagnosis and treatment. Conclusion: Here, we summarize currently available data on non-coding RNAs, TLRs, and the underlying molecular mechanisms in RA. This review will provide insight into the potential use of non-coding RNA as disease diagnosis and treatment markers for RA.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Paz Nombela ◽  
Borja Miguel-López ◽  
Sandra Blanco

AbstractRNA modifications have recently emerged as critical posttranscriptional regulators of gene expression programmes. Significant advances have been made in understanding the functional role of RNA modifications in regulating coding and non-coding RNA processing and function, which in turn thoroughly shape distinct gene expression programmes. They affect diverse biological processes, and the correct deposition of many of these modifications is required for normal development. Alterations of their deposition are implicated in several diseases, including cancer. In this Review, we focus on the occurrence of N6-methyladenosine (m6A), 5-methylcytosine (m5C) and pseudouridine (Ψ) in coding and non-coding RNAs and describe their physiopathological role in cancer. We will highlight the latest insights into the mechanisms of how these posttranscriptional modifications influence tumour development, maintenance, and progression. Finally, we will summarize the latest advances on the development of small molecule inhibitors that target specific writers or erasers to rewind the epitranscriptome of a cancer cell and their therapeutic potential.


2021 ◽  
Vol 20 (4) ◽  
pp. 17-21
Author(s):  
S.A. Levakov ◽  
◽  
G.Ya. Azadova ◽  
A.E. Mamedova ◽  
Kh.R. Movtaeva ◽  
...  

Objective. To study the expression level of long non-coding RNAs ROR and MALAT1 in tissue samples of uterine fibroids. Patients and methods. Samples of myomatous nodes and tissues of normal myometrium in 28 women of reproductive age were examined. The analysis of the expression of long non-coding RNAs was carried out using a real-time reverse-transcription polymerase chain reaction (RT-PCR) with specific primers. Results. There was a significant decrease in the expression level of long non-coding RNA ROR and an increase in the MALAT1 expression in tissue samples of uterine fibroids relative to the control group. Conclusion. The results obtained demonstrate a possible role of long non-coding RNAs in the development of uterine fibroids and correlate with the data which we obtained for patients with endometriosis. Detecting the expression level of long non-coding RNAs can improve the existing methods for diagnosing this disease. However, further research is required to determine the clinical significance of MALAT1 and ROR, and the molecular mechanisms underlying the action of these RNAs in uterine fibroid cells. Key words: long non-coding RNAs, uterine fibroids, myomectomy, lncROR, MALAT1


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1382
Author(s):  
Randa Erfan ◽  
Olfat G. Shaker ◽  
Mahmoud A. F. Khalil ◽  
Yumn A. Elsabagh ◽  
Azza M. Ahmed ◽  
...  

Objective: Long non-coding RNAs (lncRNAs) and their target microRNAs were documented in multiple studies to have a significant role in different joint disorders such as rheumatoid arthritis (RA) and osteoarthritis (OA). The current work aimed to determine the potential role of lnc-PVT1 and miR-146a as promising biomarkers to distinguish between RA, OA patients, and healthy individuals. Methods: The expression levels of lnc-PVT1 and its target miR-146a in the serum were measured for three different groups, including patients with RA (40), OA patients (40), and healthy controls (HCs) (40). Participating individuals were subjected to a full history investigation and clinical examination. Blood samples were tested for ESR, RF, CBC, as well as liver and renal functions. Serum was used to detect the relative expression levels of lnc-PVT1 and miR-146a and we correlated the levels with RA and OA activity and severity signs. Results: Lnc-PVT1 expression level was greater among patients with RA compared to that of OA patients, with a fold change median of 2.62 and 0.22, respectively (p = 0.001). The miR-146a fold change was significantly demonstrated between the RA, OA, and HCs groups. There was no correlation between both biomarkers with the disease activity scales (DAS28) of RA, the Knee injury Osteoarthritis Outcome Score (KOOS), or any sign of detection of the disease severity of OA. Conclusions: lnc-PVT1 and miR-146a could be considered as promising biomarkers for the diagnosis of RA and OA and may have an important role as therapeutic targets in the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Weiping Xia ◽  
Yao He ◽  
Yu Gan ◽  
Bo Zhang ◽  
Guoyu Dai ◽  
...  

Renal fibrosis (RF) is a pathological process that culminates in terminal renal failure in chronic kidney disease (CKD). Fibrosis contributes to progressive and irreversible decline in renal function. However, the molecular mechanisms involved in RF are complex and remain poorly understood. Long non-coding RNAs (lncRNAs) are a major type of non-coding RNAs, which significantly affect various disease processes, cellular homeostasis, and development through multiple mechanisms. Recent investigations have implicated aberrantly expressed lncRNA in RF development and progression, suggesting that lncRNAs play a crucial role in determining the clinical manifestation of RF. In this review, we comprehensively evaluated the recently published articles on lncRNAs in RF, discussed the potential application of lncRNAs as diagnostic and/or prognostic biomarkers, proposed therapeutic targets for treating RF-associated diseases and subsequent CKD transition, and highlight future research directions in the context of the role of lncRNAs in the development and treatment of RF.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anshika Chowdhary ◽  
Venkata Satagopam ◽  
Reinhard Schneider

Long non-coding RNAs are diverse class of non-coding RNA molecules >200 base pairs of length having various functions like gene regulation, dosage compensation, epigenetic regulation. Dysregulation and genomic variations of several lncRNAs have been implicated in several diseases. Their tissue and developmental specific expression are contributing factors for them to be viable indicators of physiological states of the cells. Here we present an comprehensive review the molecular mechanisms and functions, state of the art experimental and computational pipelines and challenges involved in the identification and functional annotation of lncRNAs and their prospects as biomarkers. We also illustrate the application of co-expression networks on the TCGA-LIHC dataset for putative functional predictions of lncRNAs having a therapeutic potential in Hepatocellular carcinoma (HCC).


2020 ◽  
Vol 66 (4) ◽  
pp. 72-84
Author(s):  
M. Khetsuriani ◽  
◽  
V. Dosenko ◽  

A large part of the human genome is transcribed into non-coding RNA. This review focuses on long noncoding RNAs (lncRNAs) involved in the regulation of gene expression. We considered information about the molecular mechanisms of of lncRNAs functioning, features of their interaction with miRNAs, mRNAs, DNA and the participation of lncRNAs in physiological and pathological processes of the cardiovascular system. In particular, the review shows the role of lncRNAs in cardiac cell differentiation, ischemic myocardial damage, cardiac hypertrophy, endothelial and smooth muscle dysfunction. Significant changes in the expression of individual lncRNAs in cardiac pathologies allow the use of these molecules for diagnostic purposes and as possible therapeutic targets.


2019 ◽  
Vol 14 (3) ◽  
pp. 219-225 ◽  
Author(s):  
Cong Tang ◽  
Guodong Zhu

The nuclear factor kappa B (NF-κB) consists of a family of transcription factors involved in the regulation of a wide variety of biological responses. Growing evidence support that NF-κB plays a major role in oncogenesis as well as its well-known function in the regulation of immune responses and inflammation. Therefore, we made a review of the diverse molecular mechanisms by which the NF-κB pathway is constitutively activated in different types of human cancers and the potential role of various oncogenic genes regulated by this transcription factor in cancer development and progression. We also discussed various pharmacological approaches employed to target the deregulated NF-κB signaling pathway and their possible therapeutic potential in cancer therapy. Moreover, Syk (Spleen tyrosine kinase), non-receptor tyrosine kinase which mediates signal transduction downstream of a variety of transmembrane receptors including classical immune-receptors like the B-cell receptor (BCR), which can also activate the inflammasome and NF-κB-mediated transcription of chemokines and cytokines in the presence of pathogens would be discussed as well. The highlight of this review article is to summarize the classic and novel signaling pathways involved in NF-κB and Syk signaling and then raise some possibilities for cancer therapy.


2021 ◽  
Vol 11 (6) ◽  
pp. 513
Author(s):  
Zheng Zhang ◽  
Meng Gu ◽  
Zhongze Gu ◽  
Yan-Ru Lou

Genetic polymorphisms are defined as the presence of two or more different alleles in the same locus, with a frequency higher than 1% in the population. Since the discovery of long non-coding RNAs (lncRNAs), which refer to a non-coding RNA with a length of more than 200 nucleotides, their biological roles have been increasingly revealed in recent years. They regulate many cellular processes, from pluripotency to cancer. Interestingly, abnormal expression or dysfunction of lncRNAs is closely related to the occurrence of human diseases, including cancer and degenerative neurological diseases. Particularly, their polymorphisms have been found to be associated with altered drug response and/or drug toxicity in cancer treatment. However, molecular mechanisms are not yet fully elucidated, which are expected to be discovered by detailed studies of RNA–protein, RNA–DNA, and RNA–lipid interactions. In conclusion, lncRNAs polymorphisms may become biomarkers for predicting the response to chemotherapy in cancer patients. Here we review and discuss how gene polymorphisms of lncRNAs affect cancer chemotherapeutic response. This knowledge may pave the way to personalized oncology treatments.


2021 ◽  
Vol 22 (14) ◽  
pp. 7256
Author(s):  
Vianet Argelia Tello-Flores ◽  
Fredy Omar Beltrán-Anaya ◽  
Marco Antonio Ramírez-Vargas ◽  
Brenda Ely Esteban-Casales ◽  
Napoleón Navarro-Tito ◽  
...  

Long non-coding RNAs (lncRNAs) are single-stranded RNA biomolecules with a length of >200 nt, and they are currently considered to be master regulators of many pathological processes. Recent publications have shown that lncRNAs play important roles in the pathogenesis and progression of insulin resistance (IR) and glucose homeostasis by regulating inflammatory and lipogenic processes. lncRNAs regulate gene expression by binding to other non-coding RNAs, mRNAs, proteins, and DNA. In recent years, several mechanisms have been reported to explain the key roles of lncRNAs in the development of IR, including metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), imprinted maternal-ly expressed transcript (H19), maternally expressed gene 3 (MEG3), myocardial infarction-associated transcript (MIAT), and steroid receptor RNA activator (SRA), HOX transcript antisense RNA (HOTAIR), and downregulated Expression-Related Hexose/Glucose Transport Enhancer (DREH). LncRNAs participate in the regulation of lipid and carbohydrate metabolism, the inflammatory process, and oxidative stress through different pathways, such as cyclic adenosine monophosphate/protein kinase A (cAMP/PKA), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), polypyrimidine tract-binding protein 1/element-binding transcription factor 1c (PTBP1/SREBP-1c), AKT/nitric oxide synthase (eNOS), AKT/forkhead box O1 (FoxO1), and tumor necrosis factor-alpha (TNF-α)/c-Jun-N-terminal kinases (JNK). On the other hand, the mechanisms linked to the molecular, cellular, and biochemical actions of lncRNAs vary according to the tissue, biological species, and the severity of IR. Therefore, it is essential to elucidate the role of lncRNAs in the insulin signaling pathway and glucose and lipid metabolism. This review analyzes the function and molecular mechanisms of lncRNAs involved in the development of IR.


2021 ◽  
pp. 1-8
Author(s):  
Mahmood Tavakkoli ◽  
Saeed Aali ◽  
Borzoo Khaledifar ◽  
Gordon A. Ferns ◽  
Majid Khazaei ◽  
...  

<b><i>Background:</i></b> Post-surgical adhesion bands (PSABs) are a common complication after abdominal or pelvic surgeries for different reasons like cancer treatment. Despite improvements in surgical techniques and the administration of drugs or the use of physical barriers, there has only been limited improvement in the frequency of postoperative adhesions. Complications of PSAB are pain, infertility, intestinal obstruction, and increased mortality. The most important molecular mechanisms for the development of PSAB are inflammatory response, oxidative stress, and overexpression of pro-fibrotic molecules such as transforming growth factor β. However, questions remain about the pathogenesis of this problem, for example, the causes for individual differences or why certain tissue sites are more prone to post-surgical adhesions. <b><i>Summary:</i></b> Addressing the pathological causes of PSAB, the potential role of local angiotensin II/angiotensin II type 1 receptors (AngII/AT1R), may help to prevent this problem. <b><i>Key Message:</i></b> The objective of this article was to explore the role of the AngII/AT1R axis potential to induce PSAB and the therapeutic potential of angiotensin receptor blockers in the prevention and treatment of PSAB.


Sign in / Sign up

Export Citation Format

Share Document