Interrupting the FGF19-FGFR4 Axis to Therapeutically Disrupt Cancer Progression

2018 ◽  
Vol 19 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Liwei Lang ◽  
Austin Y. Shull ◽  
Yong Teng

Coordination between the amplification of the fibroblast growth factor FGF19, overexpression of its corresponding receptor FGFR4, and hyperactivation of the downstream transmembrane enzyme β-klotho has been found to play pivotal roles in mediating tumor development and progression. Aberrant FGF19-FGFR4 signaling has been implicated in driving specific tumorigenic events including cancer cell proliferation, apoptosis resistance, and metastasis by activating a myriad of downstream signaling cascades. As an attractive target, several strategies implemented to disrupt the FGF19-FGFR4 axis have been developed in recent years, and FGF19-FGFR4 binding inhibitors are being intensely evaluated for their clinical use in treating FGF19-FGFR4 implicated cancers. Based on the established work, this review aims to detail how the FGF19-FGFR4 signaling pathway plays a vital role in cancer progression and why disrupting communication between FGF19 and FGFR4 serves as a promising therapeutic strategy for disrupting cancer progression.

2020 ◽  
Vol 35 (1) ◽  
pp. 10-18 ◽  
Author(s):  
Mingzhu Lin ◽  
Yinyan Li ◽  
Jianfeng Xian ◽  
Jinbin Chen ◽  
Yingyi Feng ◽  
...  

Objective: Abundant evidence has illustrated that long non-coding RNA (lncRNA) plays a vital role in the regulation of tumor development and progression. Ectopic expression of a novel lncRNA, termed lnc-AGER-1, has been discovered in cancers, and this lncRNA was reported to exert an anti-tumor effect. However, its biological mechanism remains unelucidated in colorectal cancer. Methods: A total of 159 paired colorectal cancer specimens and adjacent tissues was applied to detect the expression of lnc-AGER-1 by the quantitative Real-time PCR (qRT-PCR), and a series of functional assays was executed to uncover the role of this lncRNA on colorectal cancer. Results: We found that the expression of lnc-AGER-1 in the tumor tissues was significantly down-regulated, while compared with adjacent normal tissues (0.0115 ± 0.0718 vs. 0.0347 ± 0.157; P < 0.0001). Also, lnc-AGER-1 was observably associated with clinical T status (r = −0.184, P = 0.024). Patients with advanced T status exerted a significantly lower level of lnc-AGER-1 than those with early T status (20.0% vs. 40.7%, P = 0.021). Over-expression of lnc-AGER-1 inhibited cell proliferation and migration efficiency, and induced cell cycle arrest at the G0/G1 phase, and promoted cell apoptosis. Further research proved that lnc-AGER-1 altered the expression of its neighbor gene, AGER, through acting as a competing endogenous RNA for miR-182 in colorectal cancer. Conclusion: lnc-AGER-1 has a suppressive role in colorectal cancer development via modulating AGER, which may serve as a target for colorectal cancer diagnosis and treatment.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Shengtao Lin ◽  
Tao Jiang ◽  
Yang Yu ◽  
Huamei Tang ◽  
Su Lu ◽  
...  

Emerging evidence shows that exocytosis plays a key role in tumor development and metastasis. Secernin-1 (SCRN1) is a novel regulator of exocytosis. Our previous work identified SCRN1 as a tumor-associated gene by bioinformatics analysis of transcriptomes. In this study, we demonstrated the aberrant overexpression of SCRN1 at mRNA and protein level in colon cancer. We also revealed that overexpression of SCRN1 was significantly associated with the tumor development and poor prognosis. Experimentsin vitrovalidated that SCRN1 may promote cancer cell proliferation and secretion of matrix metalloproteinase-2/9 (MMP-2/9) proteins to accelerate tumor progression.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Peng Wang ◽  
Yonghui Yuan ◽  
Wenda Lin ◽  
Hongshan Zhong ◽  
Ke Xu ◽  
...  

AbstractThe potent pleiotropic lipid mediator sphingosine-1-phosphate (S1P) participates in numerous cellular processes, including angiogenesis and cell survival, proliferation, and migration. It is formed by one of two sphingosine kinases (SphKs), SphK1 and SphK2. These enzymes largely exert their various biological and pathophysiological actions through one of five G protein-coupled receptors (S1PR1–5), with receptor activation setting in motion various signaling cascades. Considerable evidence has been accumulated on S1P signaling and its pathogenic roles in diseases, as well as on novel modulators of S1P signaling, such as SphK inhibitors and S1P agonists and antagonists. S1P and ceramide, composed of sphingosine and a fatty acid, are reciprocal cell fate regulators, and S1P signaling plays essential roles in several diseases, including inflammation, cancer, and autoimmune disorders. Thus, targeting of S1P signaling may be one way to block the pathogenesis and may be a therapeutic target in these conditions. Increasingly strong evidence indicates a role for the S1P signaling pathway in the progression of cancer and its effects. In the present review, we discuss recent progress in our understanding of S1P and its related proteins in cancer progression. Also described is the therapeutic potential of S1P receptors and their downstream signaling cascades as targets for cancer treatment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiuyun Xuan ◽  
Chunxia Tian ◽  
Mengjie Zhao ◽  
Yanhong Sun ◽  
Changzheng Huang

AbstractIncreasing evidence indicates that the tumor microenvironment appears to play an increasingly important role in cancer progression and therapeutic resistance. Several types of cells within the tumor stroma had distinct impacts on cancer progression, either promoting or inhibiting cancer cell growth. Mesenchymal stem cells (MSCs) are a distinct type of cells that is linked to tumor development. MSCs are recognized for homing to tumor locations and promoting or inhibiting cancer cell proliferation, angiogenesis and metastasis. Moreover, emerging studies suggests that MSCs are also involved in therapeutic resistance. In this review, we analyzed the existing researches and elaborate on the functions of MSCs in cancer progression and anticancer therapeutic resistance, demonstrating that MSCs may be a viable cancer therapeutic target.


2021 ◽  
Vol 7 (1) ◽  
pp. 10
Author(s):  
Kenzui Taniue ◽  
Nobuyoshi Akimitsu

Fusion RNAs are a hallmark of some cancers. They result either from chromosomal rearrangements or from splicing mechanisms that are non-chromosomal rearrangements. Chromosomal rearrangements that result in gene fusions are particularly prevalent in sarcomas and hematopoietic malignancies; they are also common in solid tumors. The splicing process can also give rise to more complex RNA patterns in cells. Gene fusions frequently affect tyrosine kinases, chromatin regulators, or transcription factors, and can cause constitutive activation, enhancement of downstream signaling, and tumor development, as major drivers of oncogenesis. In addition, some fusion RNAs have been shown to function as noncoding RNAs and to affect cancer progression. Fusion genes and RNAs will therefore become increasingly important as diagnostic and therapeutic targets for cancer development. Here, we discuss the function, biogenesis, detection, clinical relevance, and therapeutic implications of oncogenic fusion genes and RNAs in cancer development. Further understanding the molecular mechanisms that regulate how fusion RNAs form in cancers is critical to the development of therapeutic strategies against tumorigenesis.


2020 ◽  
Vol 21 (3) ◽  
pp. 788 ◽  
Author(s):  
Maria Valeria Catani ◽  
Isabella Savini ◽  
Valentina Tullio ◽  
Valeria Gasperi

Besides their vital role in hemostasis and thrombosis, platelets are also recognized to be involved in cancer, where they play an unexpected central role: They actively influence cancer cell behavior, but, on the other hand, platelet physiology and phenotype are impacted by tumor cells. The existence of this platelet-cancer loop is supported by a large number of experimental and human studies reporting an association between alterations in platelet number and functions and cancer, often in a way dependent on patient, cancer type and treatment. Herein, we shall report on an update on platelet-cancer relationships, with a particular emphasis on how platelets might exert either a protective or a deleterious action in all steps of cancer progression. To this end, we will describe the impact of (i) platelet count, (ii) bioactive molecules secreted upon platelet activation, and (iii) microvesicle-derived miRNAs on cancer behavior. Potential explanations of conflicting results are also reported: Both intrinsic (heterogeneity in platelet-derived bioactive molecules with either inhibitory or stimulatory properties; features of cancer cell types, such as aggressiveness and/or tumour stage) and extrinsic (heterogeneous characteristics of cancer patients, study design and sample preparation) factors, together with other confounding elements, contribute to “the Janus face” of platelets in cancer. Given the difficulty to establish the univocal role of platelets in a tumor, a better understanding of their exact contribution is warranted, in order to identify an efficient therapeutic strategy for cancer management, as well as for better prevention, screening and risk assessment protocols.


2020 ◽  
Vol 11 ◽  
Author(s):  
Yi Shi ◽  
David J. Riese ◽  
Jianzhong Shen

Chemokines are a family of small, secreted cytokines which regulate a variety of cell functions. The C-X-C motif chemokine ligand 12 (CXCL12) binds to C-X-C chemokine receptor type 4 (CXCR4) and C-X-C chemokine receptor type 7 (CXCR7). The interaction of CXCL12 and its receptors subsequently induces downstream signaling pathways with broad effects on chemotaxis, cell proliferation, migration, and gene expression. Accumulating evidence suggests that the CXCL12/CXCR4/CXCR7 axis plays a pivotal role in tumor development, survival, angiogenesis, metastasis, and tumor microenvironment. In addition, this chemokine axis promotes chemoresistance in cancer therapy via complex crosstalk with other pathways. Multiple small molecules targeting CXCR4/CXCR7 have been developed and used for preclinical and clinical cancer treatment. In this review, we describe the roles of the CXCL12/CXCR4/CXCR7 axis in cancer progression and summarize strategies to develop novel targeted cancer therapies.


2020 ◽  
Vol 26 ◽  
Author(s):  
Maryam Dashtiahangar ◽  
Leila Rahbarnia ◽  
Safar Farajnia ◽  
Arash Salmaninejad ◽  
Arezoo Gowhari Shabgah ◽  
...  

: The development of recombinant immunotoxins (RITs) as a novel therapeutic strategy has made a revolution in the treatment of cancer. RITs are resulting from the fusion of antibodies to toxin proteins for targeting and eliminating cancerous cells by inhibiting protein synthesis. Despite indisputable outcomes of RITs regarding inhibiting multiple cancer types, high immunogenicity has been known as the main obstacle in the clinical use of RITs. Various strategies have been proposed to overcome these limitations, including immunosuppressive therapy, humanization of the antibody fragment moiety, generation of immunotoxins originated from endogenous human cytotoxic enzymes, and modification of the toxin moiety to escape the immune system. This paper devoted to reviewing recent advances in the design of immunotoxins with lower immunogenicity.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 195
Author(s):  
Francisca Dias ◽  
Cristina Almeida ◽  
Ana Luísa Teixeira ◽  
Mariana Morais ◽  
Rui Medeiros

The development and progression of colorectal cancer (CRC) have been associated with genetic and epigenetic alterations and more recently with changes in cell metabolism. Amino acid transporters are key players in tumor development, and it is described that tumor cells upregulate some AA transporters in order to support the increased amino acid (AA) intake to sustain the tumor additional needs for tumor growth and proliferation through the activation of several signaling pathways. LAT1 and ASCT2 are two AA transporters involved in the regulation of the mTOR pathway that has been reported as upregulated in CRC. Some attempts have been made in order to develop therapeutic approaches to target these AA transporters, however none have reached the clinical setting so far. MiRNA-based therapies have been gaining increasing attention from pharmaceutical companies and now several miRNA-based drugs are currently in clinical trials with promising results. In this review we combine a bioinformatic approach with a literature review in order to identify a miRNA profile with the potential to target both LAT1 and ASCT2 with potential to be used as a therapeutic approach against CRC.


Biomolecules ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 37
Author(s):  
An-Jen Chiang ◽  
Chia-Jung Li ◽  
Kuan-Hao Tsui ◽  
Chung Chang ◽  
Yuan-chin Ivan Chang ◽  
...  

Cervical cancer is a common gynecological malignancy, accounting for 10% of all gynecological cancers. Recently, targeted therapy for cervical cancer has shown unprecedented advantages. Several studies have shown that ubiquitin conjugating enzyme E2 (UBE2C) is highly expressed in a series of tumors, and participates in the progression of these tumors. However, the possible impact of UBE2C on the progression of cervical squamous cell carcinoma (CESC) remains unclear. Here, we carried out tissue microarray analysis of paraffin-embedded tissues from 294 cervical cancer patients with FIGO/TNM cancer staging records. The results indicated that UBE2C was highly expressed in human CESC tissues and its expression was related to the clinical characteristics of CESC patients. Overexpression and knockdown of UBE2C enhanced and reduced cervical cancer cell proliferation, respectively, in vitro. Furthermore, in vivo experiments showed that UBE2C regulated the expression and activity of the mTOR/PI3K/AKT pathway. In summary, we confirmed that UBE2C is involved in the process of CESC and that UBE2C may represent a molecular target for CESC treatment.


Sign in / Sign up

Export Citation Format

Share Document