scholarly journals Combating Neurodegenerative Diseases with the Plant Alkaloid Berberine: Molecular Mechanisms and Therapeutic Potential

2019 ◽  
Vol 17 (6) ◽  
pp. 563-579 ◽  
Author(s):  
Dahua Fan ◽  
Liping Liu ◽  
Zhengzhi Wu ◽  
Meiqun Cao

Neurodegenerative diseases are among the most serious health problems affecting millions of people worldwide. Such diseases are characterized by a progressive degeneration and / or death of neurons in the central nervous system. Currently, there are no therapeutic approaches to cure or even halt the progression of neurodegenerative diseases. During the last two decades, much attention has been paid to the neuroprotective and anti-neurodegenerative activities of compounds isolated from natural products with high efficacy and low toxicity. Accumulating evidence indicates that berberine, an isoquinoline alkaloid isolated from traditional Chinese medicinal herbs, may act as a promising anti-neurodegenerative agent by inhibiting the activity of the most important pathogenic enzymes, ameliorating intracellular oxidative stress, attenuating neuroinflammation, triggering autophagy and protecting neurons against apoptotic cell death. This review attempts to summarize the current state of knowledge regarding the therapeutic potential of berberine against neurodegenerative diseases, with a focus on the molecular mechanisms that underlie its effects on Alzheimer’s, Parkinson’s and Huntington’s diseases.

2021 ◽  
Vol 22 (9) ◽  
pp. 4630
Author(s):  
Agnieszka Kulczyńska-Przybik ◽  
Piotr Mroczko ◽  
Maciej Dulewicz ◽  
Barbara Mroczko

Reticulons (RTNs) are crucial regulatory factors in the central nervous system (CNS) as well as immune system and play pleiotropic functions. In CNS, RTNs are transmembrane proteins mediating neuroanatomical plasticity and functional recovery after central nervous system injury or diseases. Moreover, RTNs, particularly RTN4 and RTN3, are involved in neurodegeneration and neuroinflammation processes. The crucial role of RTNs in the development of several neurodegenerative diseases, including Alzheimer’s disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), or other neurological conditions such as brain injury or spinal cord injury, has attracted scientific interest. Reticulons, particularly RTN-4A (Nogo-A), could provide both an understanding of early pathogenesis of neurodegenerative disorders and be potential therapeutic targets which may offer effective treatment or inhibit disease progression. This review focuses on the molecular mechanisms and functions of RTNs and their potential usefulness in clinical practice as a diagnostic tool or therapeutic strategy.


2020 ◽  
Vol 27 (34) ◽  
pp. 5790-5828 ◽  
Author(s):  
Ze Wang ◽  
Chunyang He ◽  
Jing-Shan Shi

Neurodegenerative diseases are a heterogeneous group of disorders characterized by the progressive degeneration of the structure and function of the central nervous system or peripheral nervous system. Alzheimer's Disease (AD), Parkinson's Disease (PD) and Spinal Cord Injury (SCI) are the common neurodegenerative diseases, which typically occur in people over the age of 60. With the rapid development of an aged society, over 60 million people worldwide are suffering from these uncurable diseases. Therefore, the search for new drugs and therapeutic methods has become an increasingly important research topic. Natural products especially those from the Traditional Chinese Medicines (TCMs), are the most important sources of drugs, and have received extensive interest among pharmacist. In this review, in order to facilitate further chemical modification of those useful natural products by pharmacists, we will bring together recent studies in single natural compound from TCMs with neuroprotective effect.


Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 75 ◽  
Author(s):  
Nicoletta Nuzziello ◽  
Loredana Ciaccia ◽  
Maria Liguori

Novel insights in the development of a precision medicine approach for treating the neurodegenerative diseases (NDDs) are provided by emerging advances in the field of pharmacoepigenomics. In this context, microRNAs (miRNAs) have been extensively studied because of their implication in several disorders related to the central nervous system, as well as for their potential role as biomarkers of diagnosis, prognosis, and response to treatment. Recent studies in the field of neurodegeneration reported evidence that drug response and efficacy can be modulated by miRNA-mediated mechanisms. In fact, miRNAs seem to regulate the expression of pharmacology target genes, while approved (conventional and non-conventional) therapies can restore altered miRNAs observed in NDDs. The knowledge of miRNA pharmacoepigenomics may offers new clues to develop more effective treatments by providing novel insights into interindividual variability in drug disposition and response. Recently, the therapeutic potential of miRNAs is gaining increasing attention, and miRNA-based drugs (for cancer) have been under observation in clinical trials. However, the effective use of miRNAs as therapeutic target still needs to be investigated. Here, we report a brief review of representative studies in which miRNAs related to therapeutic effects have been investigated in NDDs, providing exciting potential prospects of miRNAs in pharmacoepigenomics and translational medicine.


Cells ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 75 ◽  
Author(s):  
Elkin Navarro Quiroz ◽  
Roberto Navarro Quiroz ◽  
Mostapha Ahmad ◽  
Lorena Gomez Escorcia ◽  
Jose Villarreal ◽  
...  

The defining characteristic of neural stem cells (NSCs) is their ability to multiply through symmetric divisions and proliferation, and differentiation by asymmetric divisions, thus giving rise to different types of cells of the central nervous system (CNS). A strict temporal space control of the NSC differentiation is necessary, because its alterations are associated with neurological dysfunctions and, in some cases, death. This work reviews the current state of the molecular mechanisms that regulate the transcription in NSCs, organized according to whether the origin of the stimulus that triggers the molecular cascade in the CNS is internal (intrinsic factors) or whether it is the result of the microenvironment that surrounds the CNS (extrinsic factors).


2018 ◽  
Vol 10 (3) ◽  
pp. 172-180 ◽  
Author(s):  
Kristina Endres ◽  
Karl-Herbert Schäfer

When thinking about neurodegenerative diseases, the first symptoms that come to mind are loss of memory and learning capabilities, which all resemble hallmarks of manifestation of such diseases in the central nervous system (CNS). However, the gut comprises the largest nervous system outside the CNS that is autonomously active and in close interplay with its microbiota. Therefore, the enteric nervous system (ENS) might serve as an indicator of degenerative pathomechanisms that also affect the CNS. On the other hand, it might offer an entry point for devastating influences from the microbial community or – conversely – for therapeutic approaches via gut commensals. Within the last years, the ENS and gut microbiota therefore have sparked the interest of researchers of CNS diseases and we here report on recent findings and open questions, especially with regard to Alzheimer and Parkinson diseases.


2021 ◽  
Vol 13 ◽  
Author(s):  
Guan-yong Ou ◽  
Wen-wen Lin ◽  
Wei-jiang Zhao

Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS), are typically characterized by progressive neuronal loss and neurological dysfunctions in the nervous system, affecting both memory and motor functions. Neuregulins (NRGs) belong to the epidermal growth factor (EGF)-like family of extracellular ligands and they play an important role in the development, maintenance, and repair of both the central nervous system (CNS) and peripheral nervous system (PNS) through the ErbB signaling pathway. They also regulate multiple intercellular signal transduction and participate in a wide range of biological processes, such as differentiation, migration, and myelination. In this review article, we summarized research on the changes and roles of NRGs in neurodegenerative diseases, especially in AD. We elaborated on the structural features of each NRG subtype and roles of NRG/ErbB signaling networks in neurodegenerative diseases. We also discussed the therapeutic potential of NRGs in the symptom remission of neurodegenerative diseases, which may offer hope for advancing related treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Juno Van Valkenburgh ◽  
Cristiana Meuret ◽  
Ashley E. Martinez ◽  
Vibha Kodancha ◽  
Victoria Solomon ◽  
...  

High-density lipoproteins (HDLs) are complex, heterogenous lipoprotein particles, consisting of a large family of apolipoproteins, formed in subspecies of distinct shapes, sizes, and functions and are synthesized in both the brain and the periphery. HDL apolipoproteins are important determinants of Alzheimer’s disease (AD) pathology and vascular dementia, having both central and peripheral effects on brain amyloid-beta (Aβ) accumulation and vascular functions, however, the extent to which HDL particles (HLD-P) can exchange their protein and lipid components between the central nervous system (CNS) and the systemic circulation remains unclear. In this review, we delineate how HDL’s structure and composition enable exchange between the brain, cerebrospinal fluid (CSF) compartment, and vascular cells that ultimately affect brain amyloid metabolism and atherosclerosis. Accordingly, we then elucidate how modifications of HDL-P have diagnostic and therapeutic potential for brain vascular and neurodegenerative diseases.


Phytomedicine ◽  
2020 ◽  
Vol 79 ◽  
pp. 153320
Author(s):  
Rasool Haddadi ◽  
Zahra Shahidi ◽  
Shahla Eyvari-Brooshghalan

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Anna-Sophia Wahl

Current experimental stroke research faces the same challenge as neuroscience: to transform correlative findings in causative ones. Research of recent years has shown the tremendous potential of the central nervous system to react to noxious stimuli such as a stroke: Increased plastic changes leading to reorganization in form of neuronal rewiring, neurogenesis, and synaptogenesis, accompanied by transcriptional and translational turnover in the affected cells, have been described both clinically and in experimental stroke research. However, only minor attempts have been made to connect distinct plastic remodeling processes as causative features for specific behavioral phenotypes. Here, we review current state-of the art techniques for the examination of cortical reorganization and for the manipulation of neuronal circuits as well as techniques which combine anatomical changes with molecular profiling. We provide the principles of the techniques together with studies in experimental stroke research which have already applied the described methodology. The tools discussed are useful to close the loop from our understanding of stroke pathology to the behavioral outcome and may allow discovering new targets for therapeutic approaches. The here presented methods open up new possibilities to assess the efficiency of rehabilitative strategies by understanding their external influence for intrinsic repair mechanisms on a neurobiological basis.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 150 ◽  
Author(s):  
Qian Cai ◽  
Yu Young Jeong

Mitochondrial dysfunction is a central aspect of aging and neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and Huntington’s disease. Mitochondria are the main cellular energy powerhouses, supplying most of ATP by oxidative phosphorylation, which is required to fuel essential neuronal functions. Efficient removal of aged and dysfunctional mitochondria through mitophagy, a cargo-selective autophagy, is crucial for mitochondrial maintenance and neuronal health. Mechanistic studies into mitophagy have highlighted an integrated and elaborate cellular network that can regulate mitochondrial turnover. In this review, we provide an updated overview of the recent discoveries and advancements on the mitophagy pathways and discuss the molecular mechanisms underlying mitophagy defects in Alzheimer’s disease and other age-related neurodegenerative diseases, as well as the therapeutic potential of mitophagy-enhancing strategies to combat these disorders.


Sign in / Sign up

Export Citation Format

Share Document