scholarly journals Testing Tool Material on Scratch Tester

Author(s):  
Saurav Salunke

Abstract: In manufacturing industry cutting tools are considered as the backbone of the metal cutting operation. In metal cutting operation there is relative motion between the tool and the workpiece. As the tool material is harder than the workpiece material, there is deformation of the workpiece which acts as a base for the formation of chips. If we observe the process of metal cutting, we can easily find out that there is a considerable amount of heat generated during the machining operation. As there is a point of interface between the tool and the workpiece, there is absorption of generated heat into both the tool as well as work material. Due to the absorption of the heat there is distortion in the tool material. In this research article we have taken the base parameters as speed, load and stroke and the output parameter is taken as the load which breaks the coating of the tool. Keywords: tool coating, scratch tester, speed, stroke, coating.

2013 ◽  
Vol 690-693 ◽  
pp. 2022-2025
Author(s):  
Hai Dong Zhao ◽  
Li Bao An ◽  
Pei Qing Yang ◽  
Ye Geng

Considerable research has been directed towards discovering new engineering materials for various applications. As a superhard material, Cubic Boron Nitride (CBN) has been developed and applied to engineering for several tens of years. Due to its high specific strength and stiffness as well as good creep, fatigue and wear resistance at elevated temperatures, CBN has been widely used as cutting tool material in manufacturing industry. In this paper, the preparation and characteristics of CBN are introduced. As hard turning has been more and more employed in recent years as an advanced metal cutting technique, the application of CBN cutting tools in hard turning is presented based on the literature, and in particular, the main wear mechanisms of CBN tools in hard turning are summarized, owing to the significant influence of tool wear on the tool life and product quality.


Author(s):  
Salman Pervaiz ◽  
Sathish Kannan ◽  
Ibrahim Deiab ◽  
Hossam Kishawy

Metal-cutting process deals with the removal of material using the shearing operation with the help of hard cutting tools. Machining operations are famous in the manufacturing sector due to their capability to manufacture tight tolerances and high dimensional accuracy while simultaneously maintaining the cost-effectiveness for higher production levels. As metal-cutting processes consume a great amount of input resources and generate some material-based waste streams, these processes are highly criticized due to their high and negative environmental impacts. Researchers in the metal-cutting sector are currently exploring and benchmarking different activities and best practices to make the cutting operation environment friendly in nature. These eco-friendly practices mainly cover the wide range of activities directly or indirectly associated with the metal-cutting operation. Most of the literature for sustainable metal-cutting activities revolves around the sustainable lubrication techniques to minimize the negative influence of cutting fluids on the environment. However, there is a need to enlarge the assessment domain for the metal-cutting process and other directly and indirectly associated practices such as enhancing sustainability through innovative methods for workpiece and cutting tool materials, and approaches to optimize energy consumption should also be explored. The aim of this article is to explore the role of energy consumption and the influence of workpiece and tool materials towards the sustainability of machining process. The article concludes that sustainability of the machining process can be improved by incorporating different innovative approaches related to the energy and tool–workpiece material consumptions.


2014 ◽  
Vol 682 ◽  
pp. 491-494 ◽  
Author(s):  
Vladislav Bibik ◽  
Elena Petrova

The author considers methods of forecasting metal-cutting tool life based on characteristics of cutting tool material. These characteristics depend on differences in numerical values of physical and chemical properties of tool material due to changes in its composition, structure, and production process variables. The described methods allow obtaining the information necessary for forecasting the tool life beyond the process of cutting, for example at the stage of cutting tool manufacturing. The author suggests using the method of registration of thermo-physical properties of the tool material as a promising forecasting technique.


Author(s):  
Ali Daneji ◽  
Salman Pervaiz ◽  
Sathish Kannan

Abstract Finite element (FE) assisted numerical modeling approach is known as a popular approach to predict the machining performance of different machining operations. Tapping operation is a well-known manufacturing process that is used to cut threads efficiently. In the automotive and aerospace applications, precisely machined tapped holes are required in the small size deep holes. Tapping process creates thread in the hole and make it ready for fastening with other mating components. Tapping operation is considered as one of the most complex machining operations due to the presence of multi-flutes and multi-land involvement between the workpiece and cutter materials. The outcome of the tapping process results in the generation of threads and accepted as one of the most commonly employed in fastening methods for the joining of different machine components. Literature revealed that tapping process has been very rarely investigated using computational modeling approaches, as most of the available studies are experimental in nature. The experimental work for tapping operation can be very time and cost consuming because of the expensive fabrication of the cutting tools. It has also been observed experimentally that minor change in the threading profiles can generate significant difference in the cutting torque. A possible solution is to analyse the whole tapping operation using finite element (FE) assisted numerical simulation. Similarly, there will be limitation towards experiments if the workpiece material is expensive and difficult to cut. It is a common observation in metal cutting industry that most of the times cutting tap results in breakage when exposed to the higher magnitude of torque. The current study is aimed on the finite element based computational investigations on the tapping process using Ti6Al4V as a workpiece material. High hot hardness and low thermal conductivity of the Ti6Al4V also plays a significant role towards the poor machining performance of the threading tool. Ti6Al4V is most commonly employed in the engineering applications where high strength to weight ratio and ability of operate at higher temperatures is required. Ti6Al4V is mainly utilized in the automotive, aerospace, biomedical and petrochemical industries. It has been identified that tapping operation is very rarely studied machining operation in the metal cutting scientific community. Different tapping process conditions were investigated computationally using finite element (FE) approach and as a result cutting forces, torques and power consumed were observed. The study provides a useful understanding towards the tapping process mechanics with respect to different cutting parameters.


2021 ◽  
Author(s):  
Zhi Lin ◽  
Caixu Yue ◽  
Desheng Hu ◽  
Xianli Liu ◽  
Steven Y. Liang ◽  
...  

Abstract Metal cutting tool is an important part of machining, and its performance directly affects the manufacturing efficiency and machining quality of products. With the increasing demands in manufacturing industry of cutting performance, machining efficiency, customization and quick response, traditional tool design methods can no longer meet the above requirements due to many repetitive work, large amount of calculation, complex process and low efficiency. Parametric design has become a new development direction of customized tool design because of its fast, stable and accurate characteristics. In this paper, the parametric design of cutting tools is realized based on the process construction method of model generating history. The tool parametric design platform is developed by the method of secondary development of commercial CAD software. The platform realizes automatic operation in the background without the main interface of CAD software, completes the parametric modeling process of tools, generates 2D drawings and 3D models conforming to ISO 13399 standard, and realizes the cloud storage function of model data. The platform has simple operation and good man-machine interaction, and realizes the parametric design of many kinds of tools. Compare with that traditional modeling method, using this parametric modeling platform, the modeling efficiency is increased by 90% on average. This platform is of great significance to improve the design efficiency of complex customized tools and shorten the original design cycle by 30%.


1979 ◽  
Vol 101 (3) ◽  
pp. 241-249 ◽  
Author(s):  
S. Kaldor ◽  
A. Ber ◽  
E. Lenz

During metal cutting while products are being manufactured, the access material is removed in the form of chips. These chips are obtained in various shapes which depend on cutting conditions, type of workpiece material machined, grade of the tool, geometry of cutting, etc. While brittle materials are being machined, the chips are segmental and disintegrating during the chip formation process. Consequently, these chips cause no difficulties. The problem exists when ductile materials are machined and one may observe the following chip forms: I—Long chips—(two dimensional and oblique type); II—Helical chips—(two dimensional and oblique type). These chips were classified by their influence on production operation. Based upon the natural crater developed during the cutting operation a chip breaker groove was introduced. These grooves are pressed into the insert during its manufacturing. It appears that the configuration of the groove has a crucial influence on the range of cutting conditions in which adequate breaking will occur. The presented paper deals with the different machinisms of chip breaking while machining with groove type chip breakers. Tests were carried out to establish the influence of the various parameters, taking part in the cutting operation, on the chip breaking process.


2014 ◽  
Vol 556-562 ◽  
pp. 498-501
Author(s):  
Xiao Jing Li ◽  
Yan Hui Hu ◽  
Di Wang ◽  
Dong Man Yu

Metal cutting processing is the most fundamental, most widely and the most important processing in industrial production. Because the development of mechanical manufacturing level plays a very important role in the coating technology material machining process. A coated carbide cutting tool with its high hardness and high wear resistance, good chemical stability and extensive compatibility characteristics, is widely applied in the metal cutting processing field. The author mainly studies the cutting force contrast between coated carbide cutting tools and not coated ones. Cutting tests have testified that if PVD technology applied on cutting, the cutting force of hard alloy cutter will alter with the change of feeds (f), depth of cutting (ap) and cutting velocity (v). The experiment suggests that the size of three-way cutting force of either the brand ZP25 hard alloy cutter or the carbide cutter by employing matrix ZP25 hard alloy cutter to respectively using PVD technology coat TiN or TiCN coating is successively FZP25>FTiCN>FTiN. The main reason for this is that the difference of frictional factor of the three kinds of cutter material and the workpiece material.


Author(s):  
Sri Atluru ◽  
Amit Deshpande ◽  
Sam Huang ◽  
Ron Pieper

Compressed air is regarded as the fourth largest utility in the manufacturing industry behind electricity, natural gas and water. It is used in a wide variety of pneumatic, mechanical and maintenance applications in every manufacturing facility. However, very little efforts have been made in trying to monitor and optimize the utilization of compressed air. Hence, a project was conducted to study and analyze the utilization of compressed air under various scenarios that are typical during metal cutting operation in a manufacturing facility. PneuViz application was developed using LabVIEW programming package to monitor and analyze the results. PneuViz was seamlessly linked with the MTConnect data being broadcasted on the corporate network. PneuViz provides drill down capability to analyze cost of compressed air on a per part, per machine, and per customer order. Monitoring the utilization of compressed air by a stand-alone Computer Numerical Control (CNC) machine as well as the overall utilization on the shop floor was facilitated by the use of a sensor system comprising of a flow meter, Data Acquisition Device (DAQ), and a power sensor (load meter). MTConnect was used to enable plug-and-play functionality across the various machines on the shop floor. This was implemented by developing a system of MTConnect adapters that were able to capture the raw sensor data and broadcast it over the Ethernet network. Subsequently, analysis was carried out over various scenarios to determine the cost, energy and carbon footprint impact of the compressed air usage on the manufacturing shop floor.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2792-2796
Author(s):  
YOUNG MOON LEE ◽  
WON SIK CHOI ◽  
JAE HWAN SON ◽  
SUN IL KIM ◽  
HEE CHUL JUNG

In metal cutting practices, for a given tool material, tool geometry is a very important element and must be carefully designed in relation to the workpiece material to be machined. Patterns of tool stress are varying with input cutting conditions; however, effects of tool geometry on tool stress are not clearly understood. The load distribution on tool face is affected by the tool geometry and this causes the change of the stress distribution on the tool.


2013 ◽  
Vol 549 ◽  
pp. 415-422 ◽  
Author(s):  
Ermanno Ceron ◽  
Nils Bay

Numerical modeling of complex sheet stamping operations is well developed and implemented in industry. The weakest link now seems to be appropriate modeling of friction and to some extent also material properties especially when it comes to new lubricants and materials. In modeling of 3-D stamping operations a coefficient of friction μ is often determined by calibration of the simulation results with experimental observations of material flow and/or measured load. In case of modeling of new stamping operations μ is typically selected based on former experience. These procedures are, however, not appropriate when introducing new tribo-systems (lubricant, workpiece material, tool material or tool coating). In order to determine friction under the very varied conditions in sheet stamping simulative testing may be applied, e.g., Plane-Strip-Testing (PST), Draw-Bead-Testing (DBT) and Bending-Under-Tension testing (BUT) but these tests should be analyzed and carefully tuned with the production process in question to ensure useful results. The present paper illustrates how the BUT test combined with classical analytical modeling may lead to very large errors in estimation of the coefficient of friction, whereas detailed numerical simulation of the test can give useful friction values as demonstrated in comparative analysis of an industrial, multistage deep drawing.


Sign in / Sign up

Export Citation Format

Share Document