scholarly journals CD82 Aggravates Sevoflurane - Induced Neurotoxicity by Regulating TRPM7 in Developing Neurons

2020 ◽  

Background: Sevoflurane, a commonly used anesthetic in neonatal, could induce neurotoxicity in newborn animals. CD82 was found to be involved in age-related cognitive impairment. However, the role of CD82 in sevoflurane-induced neurotoxicity remains elusive. Methods: Hippocampal neurons were isolated from neonatal rats (postnatal day 1 or 2), and then exposed to 1.8 % sevoflurane for 6, 12, 24 or 48 hours. Neurons were pre-transfected with siRNA targeting CD82 (siCD82) or co-transfected with siTRPM7 (transient receptor potential melastatin 7) and pcDNA 3.1-CD82, and then exposed with sevoflurane (1.8%, 12 hours). Cell viability of the neurons was analyzed with MTT assay, and cell apoptosis was determined by flow cytometry. Protein expression was analyzed by western blot. Results: Sevoflurane exposure decreased cell viability of the developing hippocampal neurons in a time-dependent manner. Protein expressions of CD82 and TRPM7 were increased in neurons post sevoflurane exposure in a time-dependent manner. Pre-transfection of siCD82 attenuated sevoflurane-induced decrease in cell viability and increase in cell apoptosis in the neurons. Moreover, knockdown of CD82 reversed the promoting effects of sevoflurane on protein expression of cleaved TRPM7 and cleaved caspase-3. Over-expression of CD82 aggravated sevoflurane-induced decrease in cell viability and increase in cell apoptosis in neurons, while knockdown of TRPM7 counteracted with the effects of CD82 over-expression on sevoflurane-induced developing neurons. Conclusion: Sevoflurane exposure increased the expression of CD82 and TRPM7 in developing hippocampal neurons, decreased cell viability and promoted the cell apoptosis. Knockdown of CD82 partially ameliorated sevoflurane-induced neurotoxicity by down-regulation of cleaved TRPM7 in the developing neurons.

2020 ◽  
Vol 17 (2) ◽  
pp. 140-146
Author(s):  
Zhongjie Zhang ◽  
Yan Xu ◽  
Songyuan Chi ◽  
Longji Cui

Background: Propofol is an intravenous drug commonly used in anesthesia procedures and intensive care in children. However, it also has neurotoxic effects on children. MicroRNA plays an important role in neurological diseases and neurotoxicity. Methods: In this study, primary rat hippocampal neurons were used to investigate the role of miR- 582-5p in propofol-induced neurotoxicity. Cell viability was monitored by 3-(4,5-dimethylthiazolyl)- 2,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, while the expression of proteins was monitored by real-time quantitation polymerase chain reaction (RT-qPCR) and western blot. TargetScan and double luciferase report assay were used to predict the targeting relationship between miR-582-5p and Rho-associated serine-threonine protein kinase 1 (ROCK1). Results: In the present study, the viability of neurons and the expression of miR-582-5p were decreased in a time-dependent manner after propofol treatment. Besides, miR-582-5p overexpression significantly reduced the toxicity of propofol on neuron cells but had no significant effect on normal nerve cells. In addition, miR-582-5p overexpression significantly reversed the expression of apoptosis-related proteins (cleaved caspase 3 and cleaved caspase 9) induced by propofol but had no significant effect in normal nerve cells. TargetScan and Dual-luciferase report assay revealed that ROCK1 was a targeted regulatory gene for miR-582-5p, and propofol treatment up-regulated ROCK1 expression by inhibiting miR-582-5p expression. Notably, miR-582-5p overexpression significantly increased cell viability, while ROCK1 overexpression reversed the effect of miR-582- 5p. Conclusion: Taken together, these findings suggest that miR-582-5p alleviated propofol-induced apoptosis of newborn rat neurons by inhibiting ROCK1.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaojun Li ◽  
Li Yao ◽  
Qianlei Liang ◽  
Hangyin Qu ◽  
Hui Cai

Objectives. Propofol is a popular anesthetic drug that is neuroprotective. However, the mechanisms of propofol for hippocampal neuroprotection remain elusive. This study is aimed at investigating the neuroprotective effect and mechanism of propofol in hippocampal neurons exposed to ischemia-reperfusion (I/R) injury. Methods. Hypoxia-reoxygenated (H/R) HT-22 cells were used to mimic I/R injury of the hippocampus in vitro. An MTT assay was used to determine cell viability. Cell apoptosis was detected by a TUNEL assay and a flow cytometry cell apoptosis assay. Expression levels of proteins were measured by Western blotting. Intracellular calcium was assessed by Fura-2/AM staining. Flow cytometry was used to determine the mitochondrial membrane potential (MMP). Coimmunoprecipitation was used to evaluate the stability of the FKBP-RyR complex. Calcineurin enzymatic activity was measured with a colorimetric method. YAP nuclear translocation was tested by immunofluorescence staining. Results. H/R induced HT-22 cell viability depression, and apoptosis was reversed by propofol treatment. Propofol could alleviate H/R-induced intracellular calcium accumulation and MMP loss by inhibiting calcineurin activity and FKBP12.6-RyR disassociation in a concentration-dependent manner. In addition, YAP expression was crucial for propofol to protect HT-22 cell apoptosis from H/R injury. Propofol could activate YAP through dephosphorylation. Activated YAP stimulated the transcription of the Bcl2 gene, which promotes cellular survival. Our data also demonstrated that propofol activated YAP through the RhoA-Lats1 pathway without large G proteins or MST involvement. In addition, we showed that there was no interaction between calcineurin signaling and YAP activation in HT-22 cells. Conclusions. Propofol protected hippocampal neurons from I/R injury through two independent signaling pathways, including the calcineurin/FKBP12.6-RyR/calcium overload pathway and the RhoA/Lats1/YAP/Bcl-2 pathway.


2020 ◽  
Vol 20 (4) ◽  
pp. 307-317
Author(s):  
Yuan Yang ◽  
Jin Huang ◽  
Jianzhong Li ◽  
Huansheng Yang ◽  
Yulong Yin

Background: Butyric acid (BT), a short-chain fatty acid, is the preferred colonocyte energy source. The effects of BT on the differentiation, proliferation, and apoptosis of small intestinal epithelial cells of piglets and its underlying mechanisms have not been fully elucidated. Methods: In this study, it was found that 0.2-0.4 mM BT promoted the differentiation of procine jejunal epithelial (IPEC-J2) cells. BT at 0.5 mM or higher concentrations significantly impaired cell viability in a dose- and time-dependent manner. In addition, BT at high concentrations inhibited the IPEC-J2 cell proliferation and induced cell cycle arrest in the G2/M phase. Results: Our results demonstrated that BT triggered IPEC-J2 cell apoptosis via the caspase8-caspase3 pathway accompanied by excess reactive oxygen species (ROS) and TNF-α production. BT at high concentrations inhibited cell autophagy associated with increased lysosome formation. It was found that BT-reduced IPEC-J2 cell viability could be attenuated by p38 MAPK inhibitor SB202190. Moreover, SB202190 attenuated BT-increased p38 MAPK target DDIT3 mRNA level and V-ATPase mRNA level that were responsible for normal acidic lysosomes. Conclusion: In conclusion, 1) at 0.2-0.4 mM, BT promotes the differentiation of IPEC-J2 cells; 2) BT at 0.5 mM or higher concentrations induces cell apoptosis via the p38 MAPK pathway; 3) BT inhibits cells autophagy and promotes lysosome formation at high concentrations.


Biology Open ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. bio053298
Author(s):  
Jingjing Wu ◽  
Youqile Wu ◽  
Xuemei Lian

ABSTRACTThis study investigated the pathophysiological role of GRP78 in the survival of lung cancer cells. Lung cancer patient data from public databases were used to analyze the expression of GRP78 and its influence on prognoses. In vivo, GRP78 protein expression was analyzed in an established urethane-induced lung tumor mouse model. In vitro, the effects of targeted inhibition of GRP78 by HA15 in lung cancer cells were assessed, with cell viability analyzed using a CCK-8 assay, cell proliferation using an EdU assay, apoptosis and cell cycle using flow cytometry, subcellular structure using electron microscopy, and relative mRNA and protein expression using RT-PCR, western blotting or immunofluorescence assays. The results showed that GRP78 was highly expressed in the lung tissue of lung cancer mice model or patients, and was associated with a poor prognosis. After inhibition of GRP78 in lung cancer cells by HA15, cell viability was decreased in a dose- and time-dependent manner, proliferation was suppressed and apoptosis promoted. Unfolded protein response signaling pathway proteins were activated, and the autophagy-related proteins and mRNAs were upregulated. Therefore, targeted inhibition of GRP78 by HA15 promotes apoptosis of lung cancer cells accompanied by ER stress and autophagy.


2013 ◽  
Vol 305 (1) ◽  
pp. C61-C69 ◽  
Author(s):  
Jie Zou ◽  
Justin F. Ainscough ◽  
Wei Yang ◽  
Alicia Sedo ◽  
Shu-Ping Yu ◽  
...  

Reactive oxygen species such as H2O2 elevates the cytosolic Ca2+ concentration ([Ca2+]c) and causes cell death via poly(ADPR) polymerase (PARP) activation, which also represents the primary mechanism by which H2O2 activate the transient receptor potential melastatin-related 2 (TRPM2) channel as a Ca2+-permeable channel present in the plasma membrane or an intracellular Ca2+-release channel. The present study aimed to define the contribution and mechanisms of the TRPM2 channels in macrophage cells in mediating Ca2+ signaling and cell death during initial response to H2O2, using mouse peritoneal macrophage, RAW264.7, and differentiated THP-1 cells. H2O2 evoked robust increases in the [Ca2+]c, and such Ca2+ responses were significantly greater at body temperature than room temperature. H2O2-induced Ca2+ responses were strongly inhibited by pretreatment with PJ-34, a PARP inhibitor, and largely prevented by removal of extracellular Ca2+. Furthermore, H2O2-induced increases in the [Ca2+]c were completely abolished in macrophage cells isolated from trpm2 −/− mice. H2O2 reduced macrophage cell viability in a duration- and concentration-dependent manner. H2O2-induced cell death was significantly attenuated by pretreatment with PJ-34 and TRPM2 channel deficiency but remained significant and persistent. Taken together, these results show that the TRPM2 channel in macrophage cells functions as a cell surface Ca2+-permeable channel that mediates Ca2+ influx and constitutes the principal Ca2+ signaling mechanism but has a limited, albeit significant, role in cell death during early exposure to H2O2.


2020 ◽  
Vol 48 (9) ◽  
pp. 030006052094976
Author(s):  
Min Li ◽  
Ying Zhang ◽  
Jixing Wang

Objective Sepsis-associated encephalopathy (SAE) is a common complication of sepsis, and excessive endoplasmic reticulum (ER) stress is closely correlated with the cell injury caused by sepsis. This study aimed to analyze the possible role of ER stress in SAE cell models. Methods PC12 and MES23.5 cells were treated with increasing concentrations of lipopolysaccharides (LPS). The Cell Counting Kit-8 assay was used to detect cell viability and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was performed to assess cell apoptosis. In addition, the protein expression levels of ER stress markers [GRP78, CHOP, inositol-requiring enzyme 1 (IRE1), and PKR-like ER kinase (PERK)] and apoptosis-related proteins (Bax, Bcl-2, caspase-3, and cleaved caspase-3) were analyzed using western blotting. Results LPS treatment activated ER stress markers in both the PC12 and MES23.5 cells. The overexpression of GRP78 significantly reduced cell viability and enhanced cell apoptosis in a time-dependent manner. An ER stress inhibitor, 4-PBA, significantly enhanced cell viability and inhibited the cell apoptosis induced by LPS. Therefore, an enhanced unfolded protein response (UPR) and UPR suppression may regulate cell apoptosis. Conclusions UPR was shown to be involved in regulating LPS-induced neuron injury. UPR could be a potential therapeutic target in SAE.


Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 345
Author(s):  
Xi-Feng Jin ◽  
Gerald Spöttl ◽  
Julian Maurer ◽  
Svenja Nölting ◽  
Christoph Josef Auernhammer

Background and aims: Inhibition of Wnt/β-catenin signaling by specific inhibitors is currently being investigated as an antitumoral strategy for various cancers. The role of Wnt/β-catenin signaling in neuroendocrine tumors still needs to be further investigated. Methods: This study investigated the antitumor activity of the porcupine (PORCN) inhibitor WNT974 and the β-catenin inhibitor PRI-724 in human neuroendocrine tumor (NET) cell lines BON1, QGP-1, and NCI-H727 in vitro. NET cells were treated with WNT974, PRI-724, or small interfering ribonucleic acids against β-catenin, and subsequent analyses included cell viability assays, flow cytometric cell cycle analysis, caspase3/7 assays and Western blot analysis. Results: Treatment of NET cells with WNT974 significantly reduced NET cell viability in a dose- and time-dependent manner by inducing NET cell cycle arrest at the G1 and G2/M phases without inducing apoptosis. WNT974 primarily blocked Wnt/β-catenin signaling by the dose- and time-dependent downregulation of low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation and non-phosphorylated β-catenin and total β-catenin, as well as the genes targeting the latter (c-Myc and cyclinD1). Furthermore, the WNT974-induced reduction of NET cell viability occurred through the inhibition of GSK-3-dependent or independent signaling (including pAKT/mTOR, pEGFR and pIGFR signaling). Similarly, treatment of NET cells with the β-catenin inhibitor PRI-724 caused significant growth inhibition, while the knockdown of β-catenin expression by siRNA reduced NET tumor cell viability of BON1 cells but not of NCI-H727 cells. Conclusions: The PORCN inhibitor WNT974 possesses antitumor properties in NET cell lines by inhibiting Wnt and related signaling. In addition, the β-catenin inhibitor PRI-724 possesses antitumor properties in NET cell lines. Future studies are needed to determine the role of Wnt/β-catenin signaling in NET as a potential therapeutic target.


2017 ◽  
Vol 41 (2) ◽  
pp. 784-794 ◽  
Author(s):  
Ying Zong ◽  
Shijie Feng ◽  
Jinwei Cheng ◽  
Chenlin Yu ◽  
Guocai Lu

Background/Aims: Activating transcription factor 4 (ATF4) is a member of the activating transcription factor family which regulates the expression of genes involved in amino acid metabolism, redox homeostasis and ER stress responses. ATF4 is also over-expressed in human solid tumors, although its effect on responsiveness to radiation is largely unexplored. Methods: Real-time PCR was used to detect ATF4 mRNA levels in cells treated with different doses of 60Coγ radiation. Cell viability was assayed using a cell counting kit. The cell cycle was analyzed using flow cytometry, and cell apoptosis was assayed using Annexin V-PI double labeling. Small interfering RNA (siRNA) against ATF4 was transfected into ECV304 cells using Lipofectamine 2000. An ATF4 over-expression plasmid (p-ATF4-CGN) was transfected into HEK293 cells that endogenously expressed low levels of ATF4. The levels of intracellular reactive oxygen species (ROS) were measured using CM-H2DCFDA as a probe. Results: ATF4 mRNA and protein expression levels were higher after radiation and increased in a dose- and time-dependent manner in AHH1 lymphoblast cells (P < 0.05). An increase in ATF4 levels was also observed after radiation in primary murine spleen cells, human endothelial ECV304 cells, human liver LO2 cells, breast cancer MCF7 cells, and human hepatocellular carcinoma HEPG2 cells. No change was observed in human embryonic kidney 293 (HEK293) cells. Over-expressing ATF4 in HEK293 cells inhibited cell proliferation, increased cell apoptosis and significantly increased the proportion of cells in G1 phase. Conversely, when ATF4 expression was knocked down using siRNA in ECV304 cells, it protected the cells from radiation-induced apoptosis. These findings suggest that ATF4 may play a role in radiation-induced cell killing by inhibiting cell proliferation and promoting cell apoptosis. Conclusions: In this study, we found that radiation up-regulated the expression of ATF4. We used ATF4 knockdown and over-expression systems to show that ATF4 may play a role in radiation-induced cellular apoptosis.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5175-5175
Author(s):  
Juliana Pereira ◽  
Debora Levy ◽  
Jorge Luis Maria Ruiz ◽  
Felipe Vieira Rodrigues Maciel ◽  
Dalton de Alencar Fisher Chamone ◽  
...  

Abstract JBD57 is a nucleoside/nucleotide analogue that in human cells causes depletion of mitochondrial DNA by disrupting oxidative phosphorylation pathways leading to toxic accumulation of nonesterified fatty acids, dicarboxylic acids and free radicals. Human 26S proteasome is also a target for JBD57. Here we evaluated JBD57 citotoxicity in several human tumor cell lines in vitro. Human MM cell line RPMI 8226/S (CCL-155), human T-cell lymphoblastic-like (Jurkat) and human T-cell leukemia (1301) were grown in RPMI 1640 medium; uterine sarcoma (MES-S (CRL-1976) cells were grown in McCoy medium; HUV-EC-C (CRL-1730) cells were grown in 199/EBSS medium. Media were supplemented with 10 % FBS. Cells were incubated at 37°C in a water-jacketed incubator with 5 % CO2. To evaluate JBD57 citotoxicity in RPMI 8226/S, MES-S, Jurkat, 1301 and HUV-EC-C cells, 104cells/well were grown in flat-bottomed 96-well tissue culture plates for 24, 48 and 72 hr; JBD57 was added to the media in several concentrations (0μM, 32.25μM, 62.5μM, 125μM, 250μM and 500μM). At the end of the experimental periods, cell viability was determined by the MTT method. JBD57 inhibited the growth of MM cell line RPMI 8226/S in a dose- and time-dependent manner. Cell viability decreased progressively with increasing concentrations of JBD57 as well as with increasing time periods. The IC50 (inhibitory concentration at 50%) was 125 μM at 72 hr. The viability of the MM cells after 72 hr incubation with JBD57 500μM was 33%, whereas 100% viability was observed when no drug was added. On the other hand, JBD57 did not affect cell viability of any of the other studied cell lines (uterine sarcoma, Jurkat, 1301 and HUVEC-C). JBD57 promotes a significant human MM cell death in a dose and time dependent manner but do not affect neither normal cell HUV-EC-C nor the tumoral cells MES-S, Jurkat and 1301, at least in the studied conditions. These results suggest that the potent antitumoral activity of JBD57 observed against MM cells could be potentially useful in the treatment of multiple myeloma.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5558-5558
Author(s):  
Jishi Wang ◽  
Wei Sixi ◽  
Wang Yating ◽  
Chai Qixiang

Abstract Aim Using lentivirus-mediated HO-1 siRNA (lenti-siHO-1-GFP) to silence the HO-1 gene in Kasumi cells so as to explore the role and mechanism of HO-1 on cell apoptosis. Methods To infect Kasumi cells with lenti-siHO-1-GFP and check the infection efficiency by using fluorescence microscopy and flow cytometry (FCM). Experimental group was divided into three groups: untreated Kasumi (K), infected Kasumi by empty vector (lenti-GFP-K) and infected Kasumi by lentivirus-mediated HO-1 siRNA (lenti-siHO-1-K). The HO-1 expression of each group was detected by realtime PCR. Fluo3-AM method was used to detect the intracellular Ca2+ accumulation. DCFH-DA was used for the measurement of intracellular ROS. The change of mitochondrial membrane potential was evaluated by JC-1 stainning by using FCM. After being treated with various concentrations of daunorubicin for 24, 48, and 72 h respectively, cell viability was determined by MTT assay. Cell apoptosis was determined by FCM following with cells dual-stained with Annexin-V-FITC and propidium iodide (PI). The mRNA of HO-1 and apoptosis-related genes were analyzed by realtime PCR and, the expressions of their corresponding protein were determined by western blot. Additionally, After treating with 10mM Ca2+chelator BAPTA-AM and 0.5mM NAC for 12h, Ca2+ accumulation, ROS generation, the expression of HO-1 and apoptosis-related genes were detected respectively. Result presented in mean±sd manner. Results After lenti-siHO-1-GFP infection for 48h, we could observe the fluorescence clear, the fluorescent intensity was 95.87% after 72 hours. The HO-1 silencing efficiency of lenti-siHO-1-K was 77.00%. MTT result showed that daunorubicin exerted moderate inhibitory effects on cell proliferation in a dose and time dependent manner. With the same treating conditions, the cell viability of lenti-siHO-1-K group was significantly lower than the other two groups(e.g 49.20±1.30% survival in lenti-siHO-1-K group, 72.40±1.90% in K group and 74.10±2.10% in lenti-GFP-K group after being treated by 5ug/ml DNR,respectively, p=0.014), while the apoptosis rate was higher than the other two groups(e.g 75.77±3.41% in lenti-siHO-1-K group, 23.72±2.03% in K group and 26.10±1.95% in lenti-GFP-K group after being treated by 5ug/ml DNR,respectively, p=0.011). Compared with other two groups, the lenti-siHO-1-K group showed a downregulation in the mRNA and protein expression of HO-1. The mRNA and protein expressions of cyto-C, caspase3, caspase8, caspase9 and caspase12 in lenti-siHO-1-K group were upregulated after exposure to 5ug/ml daunorubicin for 24 hours. Compared with K and lenti-GFP-K groups, Ca2+ accumulation in lenti-siHO-1-K group was increased significantly(e.g 40.35±2.10% in lenti-siHO-1-K group, 17.30±1.81% in K group and 14.15±1.75% in lenti-GFP-K group,respectively, p=0.041). The ROS generation was higher than the other two groups(e.g 47.65±2.05% in lenti-siHO-1-K group, 21.30±1.94% in K group and19.90±2.01% in lenti-GFP-K group,respectively, p=0.037). The ratio of Green/Red fluorescence intensity increased significantly in lenti-siHO-1-K group(e.g 0.704±0.06 in lenti-siHO-1-K group, 0.57±0.09 in K group and 0.527±0.05 in lenti-GFP-K group, respectively, p=0.042). After exposure to 10mM BAPTA-AM and 0.1mM NAC alone or combined with, both the intracellular Ca2+accumulation and the ROS level in lenti-siHO-1-K group reduced(17.59±1.01% of Ca2+acumulation and 19.78±1.3% of ROS production after BAPTA-AM treatment alone, 23.42±1.97% of Ca2+and 15.47±1.14% of ROS after being treated by NAC alone, 16.52±1.23% of Ca2+and 14.37±1.21% of ROS after treatment by both agent) , while the mRNA and protein expressions of cyto-C, caspase3, caspase8, caspase9 and caspase12, decreased significantly. Conclusion HO-1 gene silencing played a role in pro-apoptosis in Kasumi cells. The mechanism may be related to the endoplasmic reticulum stress and abnormal accumulation of intracellular Ca2+, ROS generation, descending of the mitochondrial membrane potential and release cyto-C, then further activated the caspases cascade and promoted apoptosis. However, it tended to be initiated by crosstalk in Ca2+-ROS pathway. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document