scholarly journals Training for genes - how to design it?

2017 ◽  
Vol 70 (7-8) ◽  
pp. 227-233
Author(s):  
Jelena Popadic-Gacesa

Introduction. The aim of this short review was not to be just another systematic report, but to highlight further research hypotheses regarding the challenges in performance genomics by focusing on three papers published in 2016, which offer innovative and promising approach that would be a breakthrough in more exact application of genetic data in practical work of sports experts and training design. Genes for sports. More than 200 single nucleotide polymorphisms and genetic traits associated with fitness performance have been reported in numerous studies, but genes for angiotensin converting enzyme and alpha-actinin-3 are most frequently associated with enhanced physical performance. Perspectives of epigenetics. Genotype-phenotype interactions include a wide range of molecular mechanisms with complex effects and interconnections. Gene adjusted training protocols. Using genetic profiling to match individual genotype with appropriate training modality may be a powerful tool providing personalized athletic training in the future. Conclusion. When applying genetic profiling prior to and during training programs, special consideration should be made to avoid athlete selection; it should be only used for inclusion, not for exclusion. Also, attention must be paid to social and ethical issues. Wider approach should include training interventional studies and non-athletic population in discovering new molecular pathways of muscle adaptation to exercise through genotype-phenotype interactions.

2017 ◽  
Author(s):  
Jacob L. Steenwyk ◽  
Antonis Rokas

AbstractIn recent years, copy number (CN) variation has emerged as a new and significant source of genetic polymorphisms contributing to the phenotypic diversity of populations. CN variants are defined as genetic loci that, due to duplication and deletion, vary in their number of copies across individuals in a population. CN variants range in size from 50 base pairs to whole chromosomes, can influence gene activity, and are associated with a wide range of phenotypes in diverse organisms, including the budding yeastSaccharomyces cerevisiae.In this review, we introduce CN variation, discuss the genetic and molecular mechanisms implicated in its generation, how they can contribute to genetic and phenotypic diversity in fungal populations, and consider how CN variants may influence wine yeast adaptation in fermentation-related processes. In particular, we focus on reviewing recent work investigating the contribution of changes in CN of fermentation-related genes associated with the adaptation and domestication of yeast wine strains and offer notable illustrations of such changes, including the high levels of CN variation among theCUPgenes, which confer resistance to copper, and the preferential deletion and duplication of theMALIandMAL3loci, respectively, which are responsible for metabolizing maltose and sucrose. Based on the available data, we propose that CN variation is a substantial dimension of yeast genetic diversity that occurs largely independent of single nucleotide polymorphisms. As such, CN variation harbors considerable potential for understanding and manipulating yeast strains in the wine fermentation environment and beyond.


Author(s):  
Alan Kelly

What is scientific research? It is the process by which we learn about the world. For this research to have an impact, and positively contribute to society, it needs to be communicated to those who need to understand its outcomes and significance for them. Any piece of research is not complete until it has been recorded and passed on to those who need to know about it. So, good communication skills are a key attribute for researchers, and scientists today need to be able to communicate through a wide range of media, from formal scientific papers to presentations and social media, and to a range of audiences, from expert peers to stakeholders to the general public. In this book, the goals and nature of scientific communication are explored, from the history of scientific publication; through the stages of how papers are written, evaluated, and published; to what happens after publication, using examples from landmark historical papers. In addition, ethical issues relating to publication, and the damage caused by cases of fabrication and falsification, are explored. Other forms of scientific communication such as conference presentations are also considered, with a particular focus on presenting and writing for nonspecialist audiences, the media, and other stakeholders. Overall, this book provides a broad overview of the whole range of scientific communication and should be of interest to researchers and also those more broadly interested in the process how what scientists do every day translates into outcomes that contribute to society.


Author(s):  
E. Charlaix ◽  
L. Bocquet

The boundary condition (B.C.) for hydrodynamic flows at solid surfaces is usually assumed to be that of no slip. However a number of molecular simulations and experimental investigations over the last two decades have demonstrated violations of the no-slip B.C., leading to hydrodynamic slippage at solid surfaces. In this short review, we explore the molecular mechanisms leading to hydrodynamic slippage of water at various surfaces and discuss experimental investigations allowing us to measure the so-called slip length


Author(s):  
David B. Resnik

This chapter provides an overview of the ethics of environmental health, and it introduces five chapters in the related section of The Oxford Handbook of Public Health Ethics. A wide range of ethical issues arises in managing the relationship between human health and the environment, including regulation of toxic substances, air and water pollution, waste management, agriculture, the built environment, occupational health, energy production and use, environmental justice, population control, and climate change. The values at stake in environmental health ethics include those usually mentioned in ethical debates in biomedicine and public health, such as autonomy, social utility, and justice, as well as values that address environmental concerns, such as animal welfare, stewardship of biological resources, and sustainability. Environmental health ethics, therefore, stands at the crossroads of several disciplines, including public health ethics, environmental ethics, biomedical ethics, and business ethics.


2020 ◽  
Vol 21 (15) ◽  
pp. 5475 ◽  
Author(s):  
Manuela Pennisi ◽  
Giuseppe Lanza ◽  
Luca Falzone ◽  
Francesco Fisicaro ◽  
Raffaele Ferri ◽  
...  

Increasing evidence suggests that Severe Acute Respiratory Syndrome-coronavirus-2 (SARS-CoV-2) can also invade the central nervous system (CNS). However, findings available on its neurological manifestations and their pathogenic mechanisms have not yet been systematically addressed. A literature search on neurological complications reported in patients with COVID-19 until June 2020 produced a total of 23 studies. Overall, these papers report that patients may exhibit a wide range of neurological manifestations, including encephalopathy, encephalitis, seizures, cerebrovascular events, acute polyneuropathy, headache, hypogeusia, and hyposmia, as well as some non-specific symptoms. Whether these features can be an indirect and unspecific consequence of the pulmonary disease or a generalized inflammatory state on the CNS remains to be determined; also, they may rather reflect direct SARS-CoV-2-related neuronal damage. Hematogenous versus transsynaptic propagation, the role of the angiotensin II converting enzyme receptor-2, the spread across the blood-brain barrier, the impact of the hyperimmune response (the so-called “cytokine storm”), and the possibility of virus persistence within some CNS resident cells are still debated. The different levels and severity of neurotropism and neurovirulence in patients with COVID-19 might be explained by a combination of viral and host factors and by their interaction.


2021 ◽  
Author(s):  
Zhilin Yuan ◽  
Irina S. Druzhinina ◽  
John G. Gibbons ◽  
Zhenhui Zhong ◽  
Yves Van de Peer ◽  
...  

AbstractUnderstanding how organisms adapt to extreme living conditions is central to evolutionary biology. Dark septate endophytes (DSEs) constitute an important component of the root mycobiome and they are often able to alleviate host abiotic stresses. Here, we investigated the molecular mechanisms underlying the beneficial association between the DSE Laburnicola rhizohalophila and its host, the native halophyte Suaeda salsa, using population genomics. Based on genome-wide Fst (pairwise fixation index) and Vst analyses, which compared the variance in allele frequencies of single-nucleotide polymorphisms (SNPs) and copy number variants (CNVs), respectively, we found a high level of genetic differentiation between two populations. CNV patterns revealed population-specific expansions and contractions. Interestingly, we identified a ~20 kbp genomic island of high divergence with a strong sign of positive selection. This region contains a melanin-biosynthetic polyketide synthase gene cluster linked to six additional genes likely involved in biosynthesis, membrane trafficking, regulation, and localization of melanin. Differences in growth yield and melanin biosynthesis between the two populations grown under 2% NaCl stress suggested that this genomic island contributes to the observed differences in melanin accumulation. Our findings provide a better understanding of the genetic and evolutionary mechanisms underlying the adaptation to saline conditions of the L. rhizohalophila–S. salsa symbiosis.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ruijuan Du ◽  
Chuntian Huang ◽  
Kangdong Liu ◽  
Xiang Li ◽  
Zigang Dong

AbstractAurora kinase A (AURKA) belongs to the family of serine/threonine kinases, whose activation is necessary for cell division processes via regulation of mitosis. AURKA shows significantly higher expression in cancer tissues than in normal control tissues for multiple tumor types according to the TCGA database. Activation of AURKA has been demonstrated to play an important role in a wide range of cancers, and numerous AURKA substrates have been identified. AURKA-mediated phosphorylation can regulate the functions of AURKA substrates, some of which are mitosis regulators, tumor suppressors or oncogenes. In addition, enrichment of AURKA-interacting proteins with KEGG pathway and GO analysis have demonstrated that these proteins are involved in classic oncogenic pathways. All of this evidence favors the idea of AURKA as a target for cancer therapy, and some small molecules targeting AURKA have been discovered. These AURKA inhibitors (AKIs) have been tested in preclinical studies, and some of them have been subjected to clinical trials as monotherapies or in combination with classic chemotherapy or other targeted therapies.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 136
Author(s):  
Baolong Liu ◽  
Jiujiu Yu

The nucleotide-binding domain and leucine-rich repeat related (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome is a multimeric protein complex that recognizes various danger or stress signals from pathogens, the host, and the environment, leading to activation of caspase-1 and inducing inflammatory responses. This pro-inflammatory protein complex plays critical roles in pathogenesis of a wide range of diseases including neurodegenerative diseases, autoinflammatory diseases, and metabolic disorders. Therefore, intensive efforts have been devoted to understanding its activation mechanisms and to searching for its specific inhibitors. Approximately forty natural compounds with anti-NLRP3 inflammasome properties have been identified. Here, we provide an update about new natural compounds that have been identified within the last three years to inhibit the NLRP3 inflammasome and offer an overview of the underlying molecular mechanisms of their anti-NLRP3 inflammasome activities.


2021 ◽  
Vol 22 (9) ◽  
pp. 4617
Author(s):  
Styliana Kyriakoudi ◽  
Anthi Drousiotou ◽  
Petros P. Petrou

Mitochondria are dynamic organelles, the morphology of which is tightly linked to their functions. The interplay between the coordinated events of fusion and fission that are collectively described as mitochondrial dynamics regulates mitochondrial morphology and adjusts mitochondrial function. Over the last few years, accruing evidence established a connection between dysregulated mitochondrial dynamics and disease development and progression. Defects in key components of the machinery mediating mitochondrial fusion and fission have been linked to a wide range of pathological conditions, such as insulin resistance and obesity, neurodegenerative diseases and cancer. Here, we provide an update on the molecular mechanisms promoting mitochondrial fusion and fission in mammals and discuss the emerging association of disturbed mitochondrial dynamics with human disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dora Henriques ◽  
Ana R. Lopes ◽  
Nor Chejanovsky ◽  
Anne Dalmon ◽  
Mariano Higes ◽  
...  

AbstractWith a growing number of parasites and pathogens experiencing large-scale range expansions, monitoring diversity in immune genes of host populations has never been so important because it can inform on the adaptive potential to resist the invaders. Population surveys of immune genes are becoming common in many organisms, yet they are missing in the honey bee (Apis mellifera L.), a key managed pollinator species that has been severely affected by biological invasions. To fill the gap, here we identified single nucleotide polymorphisms (SNPs) in a wide range of honey bee immune genes and developed a medium-density assay targeting a subset of these genes. Using a discovery panel of 123 whole-genomes, representing seven A. mellifera subspecies and three evolutionary lineages, 180 immune genes were scanned for SNPs in exons, introns (< 4 bp from exons), 3’ and 5´UTR, and < 1 kb upstream of the transcription start site. After application of multiple filtering criteria and validation, the final medium-density assay combines 91 quality-proved functional SNPs marking 89 innate immune genes and these can be readily typed using the high-sample-throughput iPLEX MassARRAY system. This medium-density-SNP assay was applied to 156 samples from four countries and the admixture analysis clustered the samples according to their lineage and subspecies, suggesting that honey bee ancestry can be delineated from functional variation. In addition to allowing analysis of immunogenetic variation, this newly-developed SNP assay can be used for inferring genetic structure and admixture in the honey bee.


Sign in / Sign up

Export Citation Format

Share Document