scholarly journals Mining for the association of bovine mastitis linked genes to pathological signatures and Pathways

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Muhammad Zahoor Khan ◽  
Saadet Belhan ◽  
Nebi Cetin ◽  
Adnan Ayan ◽  
Adnan Khan ◽  
...  

Abstract Background: Bovine mastitis is a common infectious disease with a serious threat to the dairy industry and public health. Mastitis is a polygenetic trait under the control of many genes. In the current study, our research attempted to address the role of mastitis-associated genes in various signalings including parasitic, viral, cancer and fungal diseases by using online bioinformatics software. Methods: We selected mastitis-associated genes from already published data and using online bioinformatics tools including DAVID and String classify the pathological role of relevant genes. A Venn diagram was used to show the status of overlapping genes among different biological function processes. Result: This study revealed that the genes gathered in published resources of mastitis were significantly correlated with Influenza A, Chagas disease, Leishmaniasis, Toxoplasmosis, Tuberculosis, Cancer signaling, Hepatitis B, Type I &II diabetes mellitus and Prion diseases biological pathways. Based on our findings, we concluded that mastitis-linked genes could be used as markers for many other diseases. Moreover, the Bioinformatics tools applied in the current study might be helpful in screening the genes involved in one disease and their association with other diseases as well.

2021 ◽  
Author(s):  
Ee-Hong Tam ◽  
Yen-Chin Liu ◽  
Chian-Huey Woung ◽  
Helene Minyi Liu ◽  
Guan-Hong Wu ◽  
...  

The NS1 protein of the influenza A virus plays a critical role in regulating several biological processes in cells, including the type I interferon (IFN) response. We previously profiled the cellular factors that interact with the NS1 protein of influenza A virus and found that the NS1 protein interacts with proteins involved in RNA splicing/processing, cell cycle regulation, and protein targeting processes, including 14-3-3ε. Since 14-3-3ε plays an important role in RIG-I translocation to MAVS to activate type I IFN expression, the interaction of the NS1 and 14-3-3ε proteins may prevent the RIG-I-mediated IFN response. In this study, we confirmed that the 14-3-3ε protein interacts with the N-terminal domain of the NS1 protein and that the NS1 protein inhibits RIG-I-mediated IFN-β promoter activation in 14-3-3ε-overexpressing cells. In addition, our results showed that knocking down 14-3-3ε can reduce IFN-β expression elicited by influenza A virus and enhance viral replication. Furthermore, we found that threonine in the 49 th amino acid position of the NS1 protein plays a role in the interaction with 14-3-3ε. Influenza A virus expressing C-terminus-truncated NS1 with T49A mutation dramatically increases IFN-β mRNA in infected cells and causes slower replication than that of virus without the T-to-A mutation. Collectively, this study demonstrates that 14-3-3ε is involved in influenza A virus-initiated IFN-β expression and that the interaction of the NS1 protein and 14-3-3ε may be one of the mechanisms for inhibiting type I IFN activation during influenza A virus infection. IMPORTANCE Influenza A virus is an important human pathogen causing severe respiratory disease. The virus has evolved several strategies to dysregulate the innate immune response and facilitate its replication. We demonstrate that the NS1 protein of influenza A virus interacts with the cellular chaperone protein 14-3-3ε, which plays a critical role in RIG-I translocation that induces type I IFN expression, and that NS1 protein prevents RIG-I translocation to mitochondrial membrane. The interaction site for 14-3-3ε is the RNA-binding domain (RBD) of the NS1 protein. Therefore, this research elucidates a novel mechanism by which the NS1 RBD mediates IFN-β suppression to facilitate influenza A viral replication. Additionally, the findings reveal the antiviral role of 14-3-3ε during influenza A virus infection.


2012 ◽  
Vol 93 (1) ◽  
pp. 120-122
Author(s):  
D N Goryachev ◽  
L R Mukhamedzhanova

Presented were the current published data on the mutual influence of different factors on the initiation and progression of disorders of formation of the bone organic matrix and its mineralization during chronic ethanol intoxication. Emphasized was the role of the toxic effect of ethanol on the osteoblastic cells, which is expressed in the increasing viscosity of the cytoplasm, disruption of the architectonics of the cytoplasmic membrane, disorganization of the polyribosomal complexes and reduction of the collagen synthesis functions. Established was the role of immune pathology, which included the formation of antibodies to a number of autogenous tissues. Found were antibodies to collagen type I, which was modified by acetaldehyde and possessed cytotoxicity. In patients with alcohol dependence noted was an increase in the concentration of interleukin-6, which stimulates the early stages of hematopoiesis and osteoclastogenesis. The mechanism of development of alcohol-dependant osteoporosis is understood as a cascade of related processes, which are linked in the circulus vitiosus. Only the initial stages of this cascade have certain specificity. The morphological consequences are mostly similar and do not differ from those of other forms of secondary systemic osteoporosis, however give the characteristic features to the clinical course.


2016 ◽  
Vol 44 (12) ◽  
pp. 241-241
Author(s):  
Ashley Steed ◽  
Lulu Sun ◽  
Morales David ◽  
Ekaterina Esaulova ◽  
Maxim Artyomov ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hideyuki Hara ◽  
Junji Chida ◽  
Keiji Uchiyama ◽  
Agriani Dini Pasiana ◽  
Etsuhisa Takahashi ◽  
...  

AbstractMisfolding of the cellular prion protein, PrPC, into the amyloidogenic isoform, PrPSc, which forms infectious protein aggregates, the so-called prions, is a key pathogenic event in prion diseases. No pathogens other than prions have been identified to induce misfolding of PrPC into PrPSc and propagate infectious prions in infected cells. Here, we found that infection with a neurotropic influenza A virus strain (IAV/WSN) caused misfolding of PrPC into PrPSc and generated infectious prions in mouse neuroblastoma cells through a hit-and-run mechanism. The structural and biochemical characteristics of IAV/WSN-induced PrPSc were different from those of RML and 22L laboratory prions-evoked PrPSc, and the pathogenicity of IAV/WSN-induced prions were also different from that of RML and 22L prions, suggesting IAV/WSN-specific formation of PrPSc and infectious prions. Our current results may open a new avenue for the role of viral infection in misfolding of PrPC into PrPSc and formation of infectious prions.


2021 ◽  
Vol 8 ◽  
Author(s):  
Regitze Renee Pedersen ◽  
Volker Krömker ◽  
Thomas Bjarnsholt ◽  
Kirstin Dahl-Pedersen ◽  
Rikke Buhl ◽  
...  

Bovine mastitis is one of the most important diseases in the dairy industry and has detrimental impact on the economy and welfare of the animals. Further, treatment failure results in increased antibiotic use in the dairy industry, as some of these mastitis cases for unknown reasons are not resolved despite standard antibiotic treatment. Chronic biofilm infections are notoriously known to be difficult to eradicate with antibiotics and biofilm formation could be a possible explanation for mastitis cases that are not resolved by standard treatment. This paper reviews the current literature on biofilm in bovine mastitis research to evaluate the status and methods used in the literature. Focus of the current research has been on isolates from milk samples and investigation of their biofilm forming properties in vitro. However, in vitro observations of biofilm formation are not easily comparable with the in vivo situation inside the udder. Only two papers investigate the location and distribution of bacterial biofilms inside udders of dairy cows with mastitis. Based on the current knowledge, the role of biofilm in bovine mastitis is still unclear and more in vivo investigations are needed to uncover the actual role of biofilm formation in the pathogenesis of bovine mastitis.


2020 ◽  
Vol 12 (6) ◽  
pp. 437-447 ◽  
Author(s):  
Wenxin Wu ◽  
Jordan P. Metcalf

The important role of interferons (IFNs) in antiviral innate immune defense is well established. Although recombinant IFN-α was approved for cancer and chronic viral infection treatment by regulatory agencies in many countries starting in 1986, no IFNs are approved for treatment of influenza A virus (IAV) infection. This is partially due to the complex effects of IFNs in acute influenza infection. IAV attacks the human respiratory system and causes significant morbidity and mortality globally. During influenza infection, depending on the strain of IAV and the individual host, type I IFNs can have protective antiviral effects or can contribute to immunopathology. In the context of virus infection, the immune system has complicated mechanisms regulating the expression and effects of type I IFN to maximize the antiviral response by both activating and enhancing beneficial innate cell function, while limiting immunopathological responses that lead to exaggerated tissue damage. In this review, we summarize the complicated, but important, role of type I IFNs in influenza infections. This includes both protective and harmful effects of these important cytokines during infection.


2018 ◽  
Vol 92 (19) ◽  
Author(s):  
Ashish Kumar ◽  
Akhilesh Kumar ◽  
Harshad Ingle ◽  
Sushil Kumar ◽  
Richa Mishra ◽  
...  

ABSTRACT MicroRNAs (miRNAs) are small noncoding RNAs that are crucial posttranscriptional regulators for host mRNAs. Recent studies indicate that miRNAs may modulate host response during RNA virus infection. However, the role of miRNAs in immune response against H5N1 infection is not clearly understood. In this study, we showed that expression of cellular miRNA miR-324-5p was downregulated in A549 cells in response to infection with RNA viruses H5N1, A/PR8/H1N1, and Newcastle disease virus (NDV) and transfection with poly(I·C). We found that miR-324-5p inhibited H5N1 replication by targeting the PB1 viral RNA of H5N1 in host cells. In addition, transcriptome analysis revealed that miR-324-5p enhanced the expression of type I interferon, type III interferon, and interferon-inducible genes (ISGs) by targeting CUEDC2, the negative regulator of the JAK1-STAT3 pathway. Together, these findings highlight that the miR-324-5p plays a crucial role in host defense against H5N1 by targeting viral PB1 and host CUEDC2 to inhibit H5N1 replication. IMPORTANCE Highly pathogenic influenza A virus (HPAIV) continues to pose a pandemic threat globally. From 2003 to 2017, H5N1 HPAIV caused 453 human deaths, giving it a high mortality rate (52.74%). This work shows that miR-324-5p suppresses H5N1 HPAIV replication by directly targeting the viral genome (thereby inhibiting viral gene expression) and cellular CUEDC2 gene, the negative regulator of the interferon pathway (thereby enhancing antiviral genes). Our study enhances the knowledge of the role of microRNAs in the cellular response to viral infection. Also, the study provides help in understanding how the host cells utilize small RNAs in controlling the viral burden.


2021 ◽  
Vol 22 (22) ◽  
pp. 12439
Author(s):  
Hideyuki Hara ◽  
Suehiro Sakaguchi

Conformational conversion of the cellular isoform of prion protein, PrPC, into the abnormally folded, amyloidogenic isoform, PrPSc, is an underlying pathogenic mechanism in prion diseases. The diseases manifest as sporadic, hereditary, and acquired disorders. Etiological mechanisms driving the conversion of PrPC into PrPSc are unknown in sporadic prion diseases, while prion infection and specific mutations in the PrP gene are known to cause the conversion of PrPC into PrPSc in acquired and hereditary prion diseases, respectively. We recently reported that a neurotropic strain of influenza A virus (IAV) induced the conversion of PrPC into PrPSc as well as formation of infectious prions in mouse neuroblastoma cells after infection, suggesting the causative role of the neuronal infection of IAV in sporadic prion diseases. Here, we discuss the conversion mechanism of PrPC into PrPSc in different types of prion diseases, by presenting our findings of the IAV infection-induced conversion of PrPC into PrPSc and by reviewing the so far reported transgenic animal models of hereditary prion diseases and the reverse genetic studies, which have revealed the structure-function relationship for PrPC to convert into PrPSc after prion infection.


Author(s):  
L.J. Chen ◽  
Y.F. Hsieh

One measure of the maturity of a device technology is the ease and reliability of applying contact metallurgy. Compared to metal contact of silicon, the status of GaAs metallization is still at its primitive stage. With the advent of GaAs MESFET and integrated circuits, very stringent requirements were placed on their metal contacts. During the past few years, extensive researches have been conducted in the area of Au-Ge-Ni in order to lower contact resistances and improve uniformity. In this paper, we report the results of TEM study of interfacial reactions between Ni and GaAs as part of the attempt to understand the role of nickel in Au-Ge-Ni contact of GaAs.N-type, Si-doped, (001) oriented GaAs wafers, 15 mil in thickness, were grown by gradient-freeze method. Nickel thin films, 300Å in thickness, were e-gun deposited on GaAs wafers. The samples were then annealed in dry N2 in a 3-zone diffusion furnace at temperatures 200°C - 600°C for 5-180 minutes. Thin foils for TEM examinations were prepared by chemical polishing from the GaA.s side. TEM investigations were performed with JE0L- 100B and JE0L-200CX electron microscopes.


Sign in / Sign up

Export Citation Format

Share Document