scholarly journals Pengaruh penambahan Carboxyl Methyl Cellulose (CMC) dan asam sitrat terhadap mutu dan ketahanan simpan susu jagung

2021 ◽  
Vol 11 (2) ◽  
pp. 131
Author(s):  
Citra Setiawati ◽  
Kamsina Kamsina ◽  
Inda Three Anova ◽  
Firdausni Firdausni ◽  
Yulia Helmi Diza
Keyword(s):  
Author(s):  
J. N. Turner ◽  
D. N. Collins

A fire involving an electric service transformer and its cooling fluid, a mixture of PCBs and chlorinated benzenes, contaminated an office building with a fine soot. Chemical analysis showed PCDDs and PCDFs including the highly toxic tetra isomers. Guinea pigs were chosen as an experimental animal to test the soot's toxicity because of their sensitivity to these compounds, and the liver was examined because it is a target organ. The soot was suspended in 0.75% methyl cellulose and administered in a single dose by gavage at levels of 1,10,100, and 500mgm soot/kgm body weight. Each dose group was composed of 6 males and 6 females. Control groups included 12 (6 male, 6 female) animals fed activated carbon in methyl cellulose, 6 males fed methyl cellulose, and 16 males and 10 females untreated. The guinea pigs were sacrificed at 42 days by suffocation in CO2. Liver samples were immediately immersed and minced in 2% gluteraldehyde in cacadylate buffer at pH 7.4 and 4°C. After overnight fixation, samples were postfixed in 1% OsO4 in cacodylate for 1 hr at room temperature, embedded in epon, sectioned and stained with uranyl acetate and lead citrate.


Author(s):  
Pradeep Deshmukh ◽  
Tanaji Nandgude ◽  
Mahendra Singh Rathode ◽  
Anil Midha ◽  
Nitin Jaiswal

The suspensions of alcoholic extract of root bark of the plant Calotropis gigantea in 0.6% carboxy methyl cellulose (CMC) were evaluated for hepatoprotective activity in Wistar albino rats by inducing hepatic injury with D-galactosamine (400 mg/kg). Alcoholic extract of root bark of the plant Calotropis gigantea at an oral dose of 200 mg/kg and 400 mg/kg exhibited a significant (P<0.001, P<0.01 and P<0.05) protection effect by normalizing the levels of aspartate amino transferase (ASAT/ GOT), alanine amino transferase (ALAT/GPT), alkaline phosphatase (ALP), total bilirubin (TB), lactate dehydrogenase (LDH), which were significantly (P<0.001) increased in rats by treatment with 400 mg/kg i.p. of D-galactosamine. Silymarin (25 mg/kg), a known hepatoprotective drug used for comparison exhibited significant activity (P<0.001).


Author(s):  
Sakthikumar T ◽  
Rajendran N N ◽  
Natarajan R

The present study was aimed to develop an extended release tablet of metoprolol Succinate for the treatment of hypertension.  Four extended release formulations F1-F4 were developed using varying proportions of hydroxylpropyl-methylcellulose K100M, sodium carboxy methyl cellulose and Eudragit L30 D55 by wet granulation. Five extended release formulations F5-F9 containing HPMC K100M and HPMC 5 cps in varying concentration were developed by direct compression. The physicochemical and in vitro release characteristics of all the formulations were investigated and compared. Two formulations, F7 and F8 have shown not more 25% drug release  in 1st h, 20%-40% drug release at 4th hour, 40%-60% drug release at 8th hour and not less than 80% at 20th hour and the release pattern conform with USP specification for 24 hours extended release formulation. It can be conclusively stated that optimum concentration of HPMC K100M (58%-65%) by direct compression method can yield an extended release of metoprolol succinate for 24 hours.


2020 ◽  
Vol 16 (1) ◽  
pp. 43-60 ◽  
Author(s):  
Priyanka Kriplani ◽  
Kumar Guarve ◽  
Uttam Singh Baghel

Background: Osteoarthritis (OA) ranks fifth among all forms of disability affecting 10% of the world population. Current treatments available are associated with multiple side effects and do not slow down the progression of the disease. Moreover, no such effective treatment is available to date in various systems of medicine to treat osteoarthritis. Curcumin and Arnica have shown evident clinical advances in the treatment of osteoarthritis. Objective: The aim of the present study was to design, optimize and characterize novel herbal transdermal patches of curcumin and Arnica montana using factorial design. Methods: A multiple factorial design was employed to investigate the effect of hydroxypropyl methyl cellulose, ethyl cellulose and jojoba oil on elongation and drug release. Transdermal patches were evaluated by FTIR, DSC, FESEM, ex vivo drug permeation, anti osteoarthritic activity and analgesic activity. Results: Independent variables exhibited a significant effect on the physicochemical properties of the prepared formulations. The higher values of drug release and elongation were observed with the higher concentration of hydroxypropyl methylcellulose and jojoba oil. Anti osteoarthritic activity was assessed by complete Freund's adjuvant arthritis model; using rats and analgesic activity by Eddy's hot plate method, using mice. Combination patch exhibited good anti osteoarthritic and analgesic activity as compare to individual drug patches. Conclusion: The design results revealed that the combination patch exhibited good physicochemical, anti osteoarthritic and analgesic activity for the treatment of osteoarthritis in animals. More plants and their combinations should be explored to get reliable, safe and effective formulations that can compete with synthetic drugs.


2020 ◽  
Vol 15 (2) ◽  
pp. 152-165
Author(s):  
Harekrishna Roy ◽  
Sisir Nandi ◽  
Ungarala Pavani ◽  
Uppuluri Lakshmi ◽  
Tamma Saicharan Reddy ◽  
...  

Background: The present study deals with the formulation and optimization of piroxicam fast dissolving tablets and analyzes the impact of an independent variable while selecting the optimized formulation utilizing Quality by Design (QbD) and Box-Behnken Design (BBD). Methods: Seventeen formulations were prepared by direct compression technique by altering the proportion of cross carmellose sodium, spray dried lactose and hydro propyl methyl cellulose (HPMC K4M). The BBD statistical technique was used to optimize formulations and correlate the relationship among all the variables. Also, the powder mixture characteristics and tablet physiochemical properties such as hardness, friability, drug content, Disintegration Time (DT) and dissolution test were determined using 900 ml of 0.1N HCl (pH-1.2) at 37 ± 0.5°C. Results: Significant quadratic model and second order polynomial equations were established using BBD. To find out the relationship between variables and responses, 3D response surface and 2D contour plot was plotted. A perturbation graph was also plotted to identify the deviation of the variables from the mean point. An optimized formula was prepared based on the predicted response and the resulting responses were observed to be close with the predicted value. Conclusion: The optimized formulation with the desired parameter and formulation with variables and responses can be obtained by BBD and could be used in the large experiment with the involvement of a large number of variables and responses.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2136
Author(s):  
Shaokang Zhang ◽  
Ru Wang ◽  
Linglin Xu ◽  
Andreas Hecker ◽  
Horst-Michael Ludwig ◽  
...  

This paper studies the influence of hydroxyethyl methyl cellulose (HEMC) on the properties of calcium sulfoaluminate (CSA) cement mortar. In order to explore the applicability of different HEMCs in CSA cement mortars, HEMCs with higher and lower molar substitution (MS)/degree of substitution (DS) and polyacrylamide (PAAm) modification were used. At the same time, two kinds of CSA cements with different contents of ye’elimite were selected. Properties of cement mortar in fresh and hardened states were investigated, including the fluidity, consistency and water-retention rate of fresh mortar and the compressive strength, flexural strength, tensile bond strength and dry shrinkage rate of hardened mortar. The porosity and pore size distribution were also analyzed by mercury intrusion porosimetry (MIP). Results show that HEMCs improve the fresh state properties and tensile bond strength of both types of CSA cement mortars. However, the compressive strength of CSA cement mortars is greatly decreased by the addition of HEMCs, and the flexural strength is decreased slightly. The MIP measurement shows that HEMCs increase the amount of micron-level pores and the porosity. The HEMCs with different MS/DS have different effects on the improvement of tensile bond strength in different CSA cement mortars. PAAm modification can improve the tensile bond strength of HEMC-modified CSA cement mortar.


2021 ◽  
Vol 290 ◽  
pp. 129504
Author(s):  
Xiaohong Ji ◽  
Wei Wang ◽  
Xia Zhao ◽  
Binbin Zhang ◽  
Shibo Chen ◽  
...  

2021 ◽  
Vol 22 (5) ◽  
pp. 2682
Author(s):  
Nazim Nassar ◽  
Felicity Whitehead ◽  
Taghrid Istivan ◽  
Robert Shanks ◽  
Stefan Kasapis

Crosslinking of hydroxypropyl methyl cellulose (HPMC) and acrylic acid (AAc) was carried out at various compositions to develop a high-solid matrix with variable glass transition properties. The matrix was synthesized by the copolymerisation of two monomers, AAc and N,N′-methylenebisacrylamide (MBA) and their grafting onto HMPC. Potassium persulfate (K2S2O8) was used to initiate the free radical polymerization reaction and tetramethylethylenediamine (TEMED) to accelerate radical polymerisation. Structural properties of the network were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), modulated differential scanning calorimetry (MDSC), small-deformation dynamic oscillation in-shear, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The results show the formation of a cohesive macromolecular entity that is highly amorphous. There is a considerable manipulation of the rheological and calorimetric glass transition temperatures as a function of the amount of added acrylic acid, which is followed upon heating by an extensive rubbery plateau. Complementary TGA work demonstrates that the initial composition of all the HPMC-AAc networks is maintained up to 200 °C, an outcome that bodes well for applications of targeted bioactive compound delivery.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1225
Author(s):  
Ali Atta ◽  
Mostufa M. Abdelhamied ◽  
Ahmed M. Abdelreheem ◽  
Mohamed R. Berber

In order to potentiate implementations in optical energy applications, flexible polymer composite films comprising methyl cellulose (MC), polyaniline (PANI) and silver nanoparticles (AgNPs) were successfully fabricated through a cast preparation method. The composite structure of the fabricated film was confirmed by X-ray diffraction and infrared spectroscopy, indicating a successful incorporation of AgNPs into the MC/PANI blend. The scanning electron microscope (SEM) images have indicated a homogenous loading and dispersion of AgNPs into the MC/PANI blend. The optical parameters such as band gap (Eg), absorption edge (Ed), number of carbon cluster (N) and Urbach energy (Eu) of pure MC polymer, MC/PANI blend and MC/PANI/Ag films were determined using the UV optical absorbance. The effects of AgNPs and PANI on MC polymer linear optical (LO) and nonlinear optical (NLO) parameters including reflection extinction coefficient, refractive index, dielectric constant, nonlinear refractive index, and nonlinear susceptibility are studied. The results showed a decrease in the band gap of MC/PANI/AgNPs compared to the pure MC film. Meanwhile, the estimated carbon cluster number enhanced with the incorporation of the AgNPs. The inclusion of AgNPs and PANI has enhanced the optical properties of the MC polymer, providing a new composite suitable for energy conversion systems, solar cells, biosensors, and nonlinear optical applications.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3941
Author(s):  
Giorgia Germini ◽  
Leena Peltonen

The aim of the study was to prepare indomethacin nanocrystal-loaded, 3D-printed, fast-dissolving oral polymeric film formulations. Nanocrystals were produced by the wet pearl milling technique, and 3D printing was performed by the semi-solid extrusion method. Hydroxypropyl methyl cellulose (HPMC) was the film-forming polymer, and glycerol the plasticizer. In-depth physicochemical characterization was made, including solid-state determination, particle size and size deviation analysis, film appearance evaluation, determination of weight variation, thickness, folding endurance, drug content uniformity, and disintegration time, and drug release testing. In drug nanocrystal studies, three different stabilizers were tested. Poloxamer F68 produced the smallest and most homogeneous particles, with particle size values of 230 nm and PI values below 0.20, and was selected as a stabilizer for the drug-loaded film studies. In printing studies, the polymer concentration was first optimized with drug-free formulations. The best mechanical film properties were achieved for the films with HPMC concentrations of 2.85% (w/w) and 3.5% (w/w), and these two HPMC levels were selected for further drug-loaded film studies. Besides, in the drug-loaded film printing studies, three different drug levels were tested. With the optimum concentration, films were flexible and homogeneous, disintegrated in 1 to 2.5 min, and released the drug in 2–3 min. Drug nanocrystals remained in the nano size range in the polymer films, particle sizes being in all film formulations from 300 to 500 nm. When the 3D-printed polymer films were compared to traditional film-casted polymer films, the physicochemical behavior and pharmaceutical performance of the films were very similar. As a conclusion, 3D printing of drug nanocrystals in oral polymeric film formulations is a very promising option for the production of immediate-release improved- solubility formulations.


Sign in / Sign up

Export Citation Format

Share Document