scholarly journals SCREENING OF POWDERY MILDEW RESISTANT BARLEY ACCESSIONS FROM ETHIOPIA FOR TOLERANCE TO ABIOTIC STRESSORS

2020 ◽  
Vol 180 (4) ◽  
pp. 152-158
Author(s):  
R. A. Abdullaev ◽  
O. V. Yakovleva ◽  
I. A. Kosareva ◽  
E. E. Radchenko ◽  
B. A. Batasheva

Background. Analyzing the adaptive potential of cultivated barley with the aim of using new genotypes selected and developed in the process of work is a priority trend in scientific research. The Ethiopian barleys adapted to a variety of soil and climate conditions are characterized by many valuable biological and agronomic traits. Of particular value are genotypes that combine resistance to harmful organisms and environmental stressors.Materials and methods. The collection accessions of Ethiopian barley possessing powdery mildew resistance were studied for tolerance to adverse edaphic factors (chloride salinity and high content of toxic aluminum ions in the soil). Resistance to abiotic stressors was assessed in laboratory experiments. In the study of salt tolerance, a ‘roll-based’ assessment technique was used, which takes into account the inhibition of root growth under salt (NaCl) stress conditions, compared with the reference conditions without salinization. Aluminum sensitivity of barley accessions was diagnosed in the early stages of plant development using the root test.Results and conclusions. A polymorphism of Ethiopian barleys for resistance to adverse edaphic factors was revealed. Twentyone new sources of barley resistance to toxic aluminum ions were identified, of which accessions k-8552 and k-22933 were classified as highly resistant. Accessions k-17554, k-19975, k-20029, k-20048, k-22752, k-23450 and k-25009 proved resistant to soil salinization. Barley accessions k-17554, k-22752 and k-25009 were characterized by complex resistance to powdery mildew, toxic aluminum ions, and chloride soil salinity.

2020 ◽  
Vol 181 (3) ◽  
pp. 120-127
Author(s):  
R. A. Abdullaev ◽  
B. A. Batasheva ◽  
N. V. Alpatieva ◽  
M. A. Chumakov ◽  
E. E. Radchenko ◽  
...  

Background. The most rational way to reduce barley crop losses from diseases, pests and adverse edaphic factors is cultivation of resistant varieties. The specificity of the host– pathogen interactions necessitates a constant search for new donors of resistance for breeding, and phytosanitary monitoring of cultivars.Materials and methods. The research material comprised 248 barley cultivars included in the State Register of Selection Achievements Admitted for Usage in the Russian Federation – 168 were developed domestically, and 80 by foreign breeders. Their resistance to powdery mildew and leaf rust was studied in under laboratory and field conditions. Barley cultivars distinguished for powdery mildew resistance were analyzed using molecular markers. In the laboratory, barley was screened for greenbug resistance. To study the sensitivity to toxic aluminum ions in barley, we used the laboratory method for the early diagnosis of the trait – the root test method.Results and conclusions. Field and laboratory screening revealed a fairly wide diversity of barley cultivated in Russia in terms of resistance to harmful organisms and the edaphic stressor. It was established that 24 barley cultivars were resistant to powdery mildew, and 14 accessions were carriers of the effective mlo11 allele. Two cultivars manifested combined resistance to powdery mildew and barley leaf rust. In 11 cultivars, a distinct greenbug resistance was revealed. High resistance to toxic aluminum ions according to the root and sprout length indices was observed in 26 cultivars. Accessions with the complex resistance to harmful organisms and the edaphic stressor were identified. 


Author(s):  
O. O. Kalinina ◽  
O. D. Golyaeva ◽  
O. V. Panfilova ◽  
А. V. Pikunova

Powdery mildew is one of the most harmful fungal diseases that causes economically significant damage to berry plantations. The disease is common in all areas of currant cultivation in the Russian Federation. In this regard, in modern conditions of intensive berry growing, the problem of breeding cultivars that are highly resistant to diseases and pests becomes urgent. Breeders have a difficult task to combine the adaptive potential of the cultivar with its annual high productivity and resistance to biotic environmental factors. When studying the adaptability of introduced cultivars of red currant and selected forms of the Institute to local soil and climate conditions, the following cultivars were identified as sources of economic and useful characteristics and involved in selection: ‘Belaya Potapenko’ as a complex source of resistance powdery mildew and high marketable and taste qualities of berries; SS 1426-21-80 as a source of high productivity and long racemes (raceme length 11-13 cm; up to 20 berries in the raceme). On their base the selection family of red currant has been developed: Belaya Potapenko × ♂SS 1426-21-80. The study of data on the destruction of hybrid seedlings of the selection family by powdery mildew showed that in epiphytotic conditions, the percentage of intensity of the disease development varies over the periods of screening from 0.2% in May to 20.4% in June. Such indicators served as a prerequisite for conducting a comparative test of breeding material in the field under artificial infection with powdery mildew. After artificial infection on the background of epiphytosis, the rate of intensity of the disease development increased slightly and amounted to 35.6% for the family. There were 30 highly resistant seedlings in the family, 10 of which have remained stable and highly resistant since 2018. In these plants we can assume the presence of the so-called field resistance, controlled by polygens, each of which does not give a visible effect of stability, but with different combinations determines one or another of its degree. Highly resistant seedlings will be used in further breeding studies to identify new sources of resistance to powdery mildew.


2017 ◽  
Vol 1 (92) ◽  
pp. 100-108
Author(s):  
T.S. Vinnichuk ◽  
L.M. Parminskaya ◽  
N.M. Gavrilyuk

In the article the research the results of studies of the phytosanitary state of winter wheat sowing with three soil treatments - plowing (22-24 cm), shallow (10-12 cm) and zero (no - till) with various doses of fertilizers: N56 Р16 К16 , N110-130 Р90 К110 and N145-165 Р135 К150 , without fertilizers (control) for the two predecessors - soybean and rapeseed. The influence of these methods on the development and prevalence of powdery mildew, septoriosis of leaves, root rot of winter wheat, the most common pests in the area of research - cereal flies, wheat thrips and grain sawflies. The identified measures to limit the development and spread of harmful organisms above.


2021 ◽  
pp. 1-11
Author(s):  
Monther T. Sadder ◽  
Ahmad F. Ateyyeh ◽  
Hodayfah Alswalmah ◽  
Adel M. Zakri ◽  
Abdullah A. Alsadon ◽  
...  

Abstract Low-quality water and soil salinization are increasingly becoming limiting factors for food production, including olive – a major fruit crop in several parts of the world. Identifying putative salinity-stress tolerance in olive would be helpful in the future development of new tolerant varieties. In this study, novel salinity-responsive biomarkers (SRBs) were characterized in the species, namely, monooxygenase 1 (OeMO1), cation calcium exchanger 1 (OeCCX1), salt tolerance protein (OeSTO), proteolipid membrane potential modulator (OePMP3), universal stress protein (OeUSP2), adaptor protein complex 4 medium mu4 subunit (OeAP-4), WRKY1 transcription factor (OeWRKY1) and potassium transporter 2 (OeKT2). Unique structural features were highlighted for encoded proteins as compared with other plant homologues. The expression of olive SRBs was investigated in leaves of young plantlets of two cultivars, ‘Nabali’ (moderately tolerant) and ‘Picual’ (tolerant). At 60 mM NaCl stress level, OeMO1, OeSTO, OePMP3, OeUSP2, OeAP-4 and OeWRKY1 were up-regulated in ‘Nabali’ as compared with ‘Picual’. On the other hand, OeCCX1 and OeKT2 were up-regulated at three stress levels (30, 60 and 90 mM NaCl) in ‘Picual’ as compared to ‘Nabali’. Salinity tolerance in olive presumably engages multiple sets of responsive genes triggered by different stress levels.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 380
Author(s):  
Abdoul Kader Mounkaila Hamani ◽  
Jinsai Chen ◽  
Mukesh Kumar Soothar ◽  
Guangshuai Wang ◽  
Xiaojun Shen ◽  
...  

Soil salinization adversely affects agricultural productivity. Mitigating the adverse effects of salinity represents a current major challenge for agricultural researchers worldwide. The effects of exogenously applied glycine betaine (GB) and salicylic acid (SA) on mitigating sodium toxicity and improving the growth of cotton seedlings subjected to salt stress remain unclear. The treatments in a phytotron included a control (CK, exogenously untreated, non-saline), two NaCl conditions (0 and 150 mM), four exogenous GB concentrations (0, 2.5, 5.0, and 7.5 mM), and four exogenous SA concentrations (0, 1.0, 1.5, and 2.0 mM). The shoot and roots exposed to 150 mM NaCl without supplementation had significantly higher Na+ and reduced K+, Ca2+, and Mg2+ contents, along with lowered biomass, compared with those of CK. Under NaCl stress, exogenous GB and SA at all concentrations substantially inversed these trends by improving ion uptake regulation and biomass accumulation compared with NaCl stress alone. Supplementation with 5.0 mM GB and with 1.0 mM SA under NaCl stress were the most effective conditions for mitigating Na+ toxicity and enhancing biomass accumulation. NaCl stress had a negative effect on plant growth parameters, including plant height, leaf area, leaf water potential, and total nitrogen (N) in the shoot and roots, which were improved by supplementation with 5.0 mM GB or 1.0 mM SA. Supplementation with 5.0 mM exogenous GB was more effective in controlling the percentage loss of conductivity (PLC) under NaCl stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Francisco J. Canales ◽  
Gracia Montilla-Bascón ◽  
Luis M. Gallego-Sánchez ◽  
Fernando Flores ◽  
Nicolas Rispail ◽  
...  

Oat, Avena sativa, is an important crop traditionally grown in cool-temperate regions. However, its cultivated area in the Mediterranean rim steadily increased during the last 20 years due to its good adaptation to a wide range of soils. Nevertheless, under Mediterranean cultivation conditions, oats have to face high temperatures and drought episodes that reduce its yield as compared with northern regions. Therefore, oat crop needs to be improved for adaptation to Mediterranean environments. In this work, we investigated the influence of climatic and edaphic variables on a collection of 709 Mediterranean landraces and cultivars growing under Mediterranean conditions. We performed genotype–environment interaction analysis using heritability-adjusted genotype plus genotype–environment biplot analyses to determine the best performing accessions. Further, their local adaptation to different environmental variables and the partial contribution of climate and edaphic factors to the different agronomic traits was determined through canonical correspondence, redundancy analysis, and variation partitioning. Here, we show that northern bred elite cultivars were not among the best performing accessions in Mediterranean environments, with several landraces outyielding these. While all the best performing cultivars had early flowering, this was not the case for all the best performing landraces, which showed different patterns of adaption to Mediterranean agroclimatic conditions. Thus, higher yielding landraces showed adaptation to moderate to low levels of rain during pre- and post-flowering periods and moderate to high temperature and radiation during post-flowering period. This analysis also highlights landraces adapted to more extreme environmental conditions. The study allowed the selection of oat genotypes adapted to different climate and edaphic factors, reducing undesired effect of environmental variables on agronomic traits and highlights the usefulness of variation partitioning for selecting genotypes adapted to specific climate and edaphic conditions.


2020 ◽  
Vol 41 (1) ◽  
pp. 73
Author(s):  
Augusto Sousa Miranda ◽  
Felipe Nogueira Domingues ◽  
Bruno Spacek Godoy ◽  
Aníbal Coutinho do Rêgo ◽  
Cristian Faturi ◽  
...  

Sugarcane crops are grown in almost all regions of Brazil, in various types of soil and under the influence of different climate conditions, which results in diverse production environments as climate factors directly influence the yield and technological quality of a sugarcane crop. The present study evaluated the agronomic and technological characteristics of sugarcane cultivars grown in Af climate conditions. The agronomic traits (natural matter production and the number, length, and diameter of stalks) and technological attributes (Brix, purity, Pol, reducing sugars, total reducing sugars, moisture, and fiber content) of three sugarcane cultivars, IACSP93-6006, RB83-5486, and SP79-1011, were determined in a three-year experiment with a randomized block design using four blocks and two repetitions per block. The cultivars IACSP93-6006 and SP79-1011 exhibited superior agronomic traits compared to RB83-5486, showing better adaptation to the soil and climate conditions of the study area. However, the technological attributes, which were below the minimum standard levels required by the sugar and ethanol industry, were not statistically different among the studied cultivars. The abundant rainfall and high temperatures, characteristics of an Af climate, were not favorable for sucrose accumulation in the IACSP93-6006, RB83-5486, and SP79-1011 cultivars. Therefore, despite the high yield, sugarcane intended for industrial purposes should not be grown under Af climate conditions, owing to the insufficient technological parameters.


2021 ◽  
Vol 45 (1) ◽  
pp. 87-96
Author(s):  
Hakan Terzi ◽  
Mustafa Yıldız

Soil salinization is an important environmental problem affecting agricultural production worldwide. Seed germination is a critical process, and seedling establishment under saline conditions can be achieved by successful germination. In the present study, comparative proteomics combined with physiological analyses were used to investigate the protein alterations in germinating Brassica napus cultivars (Caravel and Sary) under NaCl stress. Seed germination declined with the increasing NaCl concentration. However, Caravel exhibited better performance in terms of seed germination and seedling growth under salinity stress. Therefore, Caravel was found to be more tolerant to salinity than Sary. The root proteins were extracted from B. napus cultivars germinating on a plant growth medium with or without 100 mM NaCl for seven days. After the root proteins had been separated by two-dimensional (2-D) gel electrophoresis, the differentially accumulated proteins were identified using MALDI-TOF/TOF MS. The comparative proteomics analysis revealed 12 and 27 statistically significant proteins accumulated in the NaCl-treated roots of Caravel and Sary, respectively. The identified proteins were mostly involved in protein metabolism, stress defense, cytoskeleton and cell wall metabolism, and energy metabolism. The salt-sensitive cultivar Sary displayed an elevated accumulation of proteins involved in antioxidant defense and the protein catabolic process such as superoxide dismutase [Fe], L-ascorbate peroxidase 1, and different components of the proteasome system. On the other hand, the levels of molecular chaperones including 20 kDa chaperonin, chaperonin CPN60, heat shock cognate protein HSC70, and heat shock 70 kDa protein 1 were higher in Caravel than Sary under salt stress. These findings will provide the possible mechanisms which contribute to salt tolerance and may serve as the basis for improving salinity tolerance in rapeseed.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1503 ◽  
Author(s):  
Angela Libutti ◽  
Anna Cammerino ◽  
Massimo Monteleone

The Mediterranean climate is marked by arid climate conditions in summer; therefore, crop irrigation is crucial to sustain plant growth and productivity in this season. If groundwater is utilized for irrigation, an impressive water pumping system is needed to satisfy crop water requirements at catchment scale. Consequently, irrigation water quality gets worse, specifically considering groundwater salinization near the coastal areas due to seawater intrusion, as well as triggering soil salinization. With reference to an agricultural coastal area in the Mediterranean basin (southern Italy), close to the Adriatic Sea, an assessment of soil salinization risk due to processing tomato cultivation was carried out. A simulation model was first arranged, then validated, and finally applied to perform a water and salt balance along a representative soil profile on a daily basis. In this regard, long-term weather data and physical soil characteristics of the considered area (both taken from international databases) were utilized in applying the model, as well as considering three salinity levels of irrigation water. Based on the climatic analysis performed and the model outputs, the probability of soil salinity came out very high, such as to seriously threaten tomato yield. Autumn–winter rainfall frequently proved to be insufficient to leach excess salts away from the soil profile and reach sustainable conditions of tomato cultivation. Therefore, alternative cropping strategies were investigated.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhixin Chen ◽  
Xueqi Zhao ◽  
Zenghui Hu ◽  
Pingsheng Leng

AbstractSoil salinization is one of the main stress factors that affect both growth and development of plants. Hylotelephium erythrostictum exhibits strong resistance to salt, but the underlying genetic mechanisms remain unclear. In this study, hydroponically cultured seedlings of H. erythrostictum were exposed to 200 mM NaCl. RNA-Seq was used to determine root transcriptomes at 0, 5, and 10 days, and potential candidate genes with differential expression were analyzed. Transcriptome sequencing generated 89.413 Gb of raw data, which were assembled into 111,341 unigenes, 82,081 of which were annotated. Differentially expressed genes associated to Na+ and K+ transport, Ca2+ channel, calcium binding protein, and nitric oxide (NO) biosynthesis had high expression levels in response to salt stress. An increased fluorescence intensity of NO indicated that it played an important role in the regulation of the cytosolic K+/Na+ balance in response to salt stress. Exogenous NO donor and NO biosynthesis inhibitors significantly increased and decreased the Na+ efflux, respectively, thus causing the opposite effect for K+ efflux. Moreover, under salt stress, exogenous NO donors and NO biosynthesis inhibitors enhanced and reduced Ca2+ influx, respectively. Combined with Ca2+ reagent regulation of Na+ and K+ fluxes, this study identifies how NaCl-induced NO may function as a signaling messenger that modulates the K+/Na+ balance in the cytoplasm via the Ca2+ signaling pathway. This enhances the salt resistance in H. erythrostictum roots.


Sign in / Sign up

Export Citation Format

Share Document