scholarly journals Rheological Investigation of Lipid Polymer Hybrid Nanocarriers for Oral Delivery of Felodipine (Conference Paper )#

Author(s):  
Hayder Kadhim Drais ◽  
Ahmed Abbas Hussein

The rheological behavior among factors that are present in Stokes law can be used to control the stability of the colloidal dispersion system. The felodipine lipid polymer hybrid nanocarriers  (LPHNs) is an interesting colloidal dispersion system that is used for rheological characteristic analysis. The LPHNs compose of polymeric components and lipids. This research aims to prepare oral felodipine LPHNs to investigate the effect of independent variables on the rheological behavior of the nanosystem. The microwave-based technique was used to prepare felodipine LPHNs (H1-H9) successfully. All the formulations enter the characterization process for particle size and PDI to ascertain the colloidal properties of the prepared nanosystem then use coaxial rotational digital rheometer for rheological evaluation. The outcomes show that all felodipine LPHNs formulations (H1-H9) had a nanosize and homogenous structure that ascertain colloidal features of the nanodispersion system. The rheogram chart indicates that all of the felodipine LPHNs formulations (H1-H9) show pseudoplastic flow (non-Newtonian flow) that have shear-thinning property. The microwave-based method prepares felodipine LPHNs formulations (H1-H9) that show excellent physical texture that ascertains its ability as a technique for the preparation of nanoparticles. All of the felodipine LPHNs formulations (H1-H9) show pseudoplastic flow that supports the physical stability of the nanosystem.

Author(s):  
Hayder Kadhim Drais ◽  
Ahmed Abbas Hussein

Purpose: Felodipine, is a calcium-channel antagonist used for hypertension and angina pectoris. It is practically insoluble in aqueous media and shows low oral bioavailability (15%-20%). This investigation aims to prepare and characterize oral felodipine lipid-polymer hybrid nanocarriers (LPHNs) to increase solubility and control delivery for increasing bioavailability and enhance patient compliance. Methods: The newly microwave-based method was prepared with felodipine LPHNs (H1-H35) successfully. The (H1-H35) were subjected to thermodynamic stability experiments. After that, select nine felodipine LPHNs (F1-F9) that have smart physical stability for further optimization of different characterization processes. Results: The felodipine LPHNs (F4) are considered the most optimized formula. It was characterized by lower particle size (33.3 nm), lower PDI (0.314), high zeta potential (13.6 mV), entrapment efficiency is (81.645 %w/w), drug loading is (16.329 % w/w), the pH value is 4, excellent percent of light transmittance (95.5%), pseudoplastic rheogram, significantly high (p< 0.05) dissolution rate with sustained drug delivery and success ex-vivo intestinal permeation attributes. The (F4) subject for further investigations of fourier transformed infrared spectroscopy (FTIR), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The results of FTIR, AFM, and TEM indicate there is no interaction between the felodipine and excipients and that the particulate system in the nanoscale dispersion system confirms the high stability. Conclusion: The optimized felodipine LPHNs (F1-F9) formulations were smart formulations for sustained oral delivery of felodipine and that F4 was the most optimized formula according to its characterization processes.


2017 ◽  
Vol 18 (4) ◽  
pp. 177-184 ◽  
Author(s):  
Kanako SATO ◽  
Shiori IDOGAWA ◽  
Tomoyuki FUJII

TAPPI Journal ◽  
2019 ◽  
Vol 18 (4) ◽  
pp. 233-241
Author(s):  
CHENGGUI SUN ◽  
RICHARD CHANDRA ◽  
YAMAN BOLUK

This study investigates the use of pretreatment and enzymatic hydrolysis side streams and conversion to lignocellulose nanofibers. We used a steam-exploded and partial enzymatic hydrolyzed hardwood pulp and an organosolv pretreated softwood pulp to prepare lignocellulose nanofibers (LCNF) via microfluidization. The energies applied on fibrillation were estimated to examine the energy consumption levels of LCNF production. The energy consumptions of the fibrillation processes of the hardwood LCNF production and the softwood LCNF production were about 7040-14080 kWh/ton and 4640 kWh/ton on a dry material basis, respectively. The morphology and dimension of developed hardwood and softwood LCNFs and the stability and rheological behavior of their suspensions were investigated and are discussed.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2301
Author(s):  
Man Zhang ◽  
Bin Liang ◽  
Hongjun He ◽  
Changjian Ji ◽  
Tingting Cui ◽  
...  

Appropriate pretreatment of proteins and addition of xanthan gum (XG) has the potential to improve the stability of oil-in-water (O/W) emulsions. However, the factors that regulate the enhancement and the mechanism are still not clear, which restricts the realization of improving the emulsion stability by directional design of its structure. Therefore, the effects of whey protein micro-gel particles (WPMPs) and WPMPs-XG complexes on the stability of O/W emulsion were investigated in this article to provide theoretical support. WPMPs with different structures were prepared by pretreatment (controlled high-speed shear treatment of heat-set WPC gels) at pH 3.5–8.5. The impact of initial WPC structure and XG addition on Turbiscan Indexes, mean droplet size and the peroxide values of O/W emulsions was investigated. The results indicate that WPMPs and XG can respectively inhibit droplet coalescence and gravitational separation to improve the physical stability of WPC-stabilized O/W emulsions. The pretreatment significantly enhanced the oxidative stability of WPC-stabilized O/W emulsions. The addition of XG did not necessarily enhance the oxidative stability of O/W emulsions. Whether the oxidative stability of the O/W emulsion with XG is increased or decreased depends on the interface structure of the protein-XG complex. This study has significant implications for the development of novel structures containing lipid phases that are susceptible to oxidation.


2014 ◽  
Vol 660 ◽  
pp. 38-42 ◽  
Author(s):  
Azriszul Mohd Amin ◽  
Mohd Halim Irwan Ibrahim ◽  
Rosli Asmawi ◽  
Najwa Mustapha

Influence of sewage ratio or Fat Oil Grease (FOG) on the feedstock rheological characteristic for optimal binder formulation in metal injection moulding is evaluated besides Polypropylene (PP) as a backbone binder. Powder loading of 62% of water atomised SS316L being used here to determine the possibility of the best binder formulation which could be optimised for optimal powder loading base on rheological characteristic analysis. Two binder formulations of PP to SF being selected here are 60/40, 50/50 and 40/60 accordingly with the powder loading of 62% each binder formulation. The analysis will be base on viscosity, shear rate, temperature, activation energy, flow behaviour index and moldability index. It is found that from rheological result views, binder with composition of 60/40 and 50/50 exhibit pseudoplastic behaviour or shear thinning where the viscosity decrease with increasing shear rate. For 40/60 binder ratio is not suitable since the behaviour of the flow indicates dilatants behaviour. After considering all the criteria in terms of flow behaviour index, activation energy, viscosity and mouldability index, binder with ratio of 60/40 is evolve as a good selections.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 560
Author(s):  
Wei Zhou ◽  
Ce Cheng ◽  
Li Ma ◽  
Liqiang Zou ◽  
Wei Liu ◽  
...  

There is growing interest in developing biomaterial-coated liposome delivery systems to improve the stability and bioavailability of curcumin, which is a hydrophobic nutraceutical claimed to have several health benefits. The curcumin-loaded rhamnolipid liposomes (Cur-RL-Lips) were fabricated from rhamnolipid and phospholipids, and then chitosan (CS) covered the surface of Cur-RL-Lips by electrostatic interaction to form CS-coated Cur-RL-Lips. The influence of CS concentration on the physical stability and digestion of the liposomes was investigated. The CS-coated Cur-RL-Lips with RL:CS = 1:1 have a relatively small size (412.9 nm) and positive charge (19.7 mV). The CS-coated Cur-RL-Lips remained stable from pH 2 to 5 at room temperature and can effectively slow the degradation of curcumin at 80 °C; however, they were highly unstable to salt addition. In addition, compared with Cur-RL-Lips, the bioavailability of curcumin in CS-coated Cur-RL-Lips was relatively high due to its high transformation in gastrointestinal tract. These results may facilitate the design of a more efficacious liposomal delivery system that enhances the stability and bioavailability of curcumin in nutraceutical-loaded functional foods and beverages.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 693
Author(s):  
Rubén Llinares ◽  
Pablo Ramírez ◽  
José Antonio Carmona ◽  
Luis Alfonso Trujillo-Cayado ◽  
José Muñoz

In this work, nanoemulsion-based delivery system was developed by encapsulation of fennel essential oil. A response surface methodology was used to study the influence of the processing conditions in order to obtain monomodal nanoemulsions of fennel essential oil using the microchannel homogenization technique. Results showed that it was possible to obtain nanoemulsions with very narrow monomodal distributions that were homogeneous over the whole observation period (three months) when the appropriate mechanical energy was supplied by microfluidization at 14 MPa and 12 passes. Once the optimal processing condition was established, nanoemulsions were formulated with advanced performance xanthan gum, which was used as both viscosity modifier and emulsion stabilizer. As a result, more desirable results with enhanced physical stability and rheological properties were obtained. From the study of mechanical spectra as a function of aging time, the stability of the nanoemulsions weak gels was confirmed. The mechanical spectra as a function of hydrocolloid concentration revealed that the rheological properties are marked by the biopolymer network and could be modulated depending on the amount of added gum. Therefore, this research supports the role of advanced performance xanthan gum as a stabilizer of microfluidized fennel oil-in-water nanoemulsions. In addition, the results of this research could be useful to design and formulate functional oil-in-water nanoemulsions with potential application in the food industry for the delivery of nutraceuticals and antimicrobials.


2021 ◽  
Vol 7 (1) ◽  
pp. 2
Author(s):  
Kalyani Pathak ◽  
Ratna Jyoti Das ◽  
Riya Saikia ◽  
Aparoop Das ◽  
Mohammad Zaki Ahmad

Natural polymers play a vital part in the formulation of pharmaceutical dosage forms due to their use as excipients. Synthetic polymers have been introduced into drug delivery recently; the usage of natural polymers in drug delivery research continues to rise. It is not surprising that applications other than its caloric value have been found for starch. Various natural sources of the polymer have been investigated for delivery systems; among them, Assam Bora rice starch seems to be a promising candidate due to its interesting properties such as being non-toxic, biocompatible, biodegradable, mucoadhesive, and non-immunogenic. Assam Bora rice, locally known as Bora Chaul, was first introduced in Assam, India, from Thailand or Myanmar by Thai-Ahom, now widely cultivated throughout the Assam. The starch obtained from Assam Bora rice is characterized by its high amylopectin content (i.e., >95%) with a branched, waxy polymer which shows physical stability and resistance towards enzymatic action. Assam Bora rice starch hydrates and swells in cold water, forming viscous colloidal dispersion or sols responsible for its bioadhesive nature. Moreover, it is degraded by colonic bacteria but remains undigested in the upper GIT. Due to the excellent adhesion and gelling capability, it is often selected as a mucoadhesive matrix in a controlled release drug delivery system. Carboxymethyl Assam Bora rice starch has also been applied for SPIONs stabilization and, further, it can effectively bind and load cationic anti-cancer drug molecule, Doxorubicin hydrochloride (DOX), via electrostatic interaction. This article provides a critical assessment of Assam Bora rice literature and shows how the rice can be used in many ways, from food additives to drug delivery systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Marwa Tlijani ◽  
Mohamed Ali Lassoued ◽  
Badr Bahloul ◽  
Souad Sfar

Our work is aimed at exploring the composition and the properties of microemulsion (ME), as a drug delivery system, to enhance the permeability across the gastrointestinal (GI) barrier of fenofibrate, a BCS class II drug. It is a prodrug that is converted rapidly after oral administration into a major active metabolite which is the fenofibric acid. It undergoes a nearly complete presystemic metabolism. Its main drawback is the low bioavailability of the metabolite. A quick selection of excipients was made based on the capacity of solubilization and the value of hydrophilic-lipophilic balance. The classical method of ME development was coupled with the factorial design in order to minimize the droplet size using a low concentration of surfactant. The optimized ME showed a droplet size of 48.5 nm and physical stability. The passive permeability evaluated using Sartorius was 1.6 times higher than that of the free drug. The ex vivo technique, performed using the everted gut sac model, showed a 2.5-fold higher permeability. This suggests that the carrier-mediated uptake/efflux may present the dominant transport mechanism of fenofibrate. The use of the excipients that inhibit GI P-glycoprotein may be a new perspective. Thus, this paper shows that the composition and the characteristics of ME may be explored to increase the permeability of fenofibrate across the GI membrane.


Sign in / Sign up

Export Citation Format

Share Document