scholarly journals KESETIMBANGAN PROSES DESORPSI AMONIA DARI ARANG AKTIF HASIL PIROLISIS LIMBAH BIOMASSA

2020 ◽  
Vol 5 (2) ◽  
pp. 48
Author(s):  
Hasni Hasni ◽  
Syamsuddin Yani ◽  
Andi Aladin ◽  
Mimin Septiani

Ammonia which is bound to the adsorbent can interfere adsorption process, so that release the compound can be done by desorption process. This research intends to know appropriate equilibrium models to determine maximum capacity of active carbon for desorption ammonia. The method which used in desorption process are Langmuir and Freundlich isotherm models. The research was performed with variation of active carbon mass and variation of contact time. The concentration of ammonia on the desorption process was determined using spectrophotometer at λ 420 nm. The experiment result showed that the more the active carbon dosage is used, the more the concentration of ammonia is increased. Optimum contact time during 7 hours with desorption percentage 94-96%. This research of ammonia desorption by active carbon followed the Langmuir equilibrium model R2 0.954 and Freundlich equilibrium model R2 0.952. The equilibrium equation is used Langmuir equation y = -0.015x + 3.185, maximum desorption capacity is 66.67 mg/g.

2021 ◽  
Vol 348 ◽  
pp. 01016
Author(s):  
Rajaa Bassam ◽  
Marouane El Alouani ◽  
Nabila Jarmouni ◽  
Jabrane Maissara ◽  
Mohammed El Mahi Chbihi ◽  
...  

Heavy metals are the most dangerous inorganic pollutants Due to their bioaccumulation and their nonbiodegradability, for this, several studies have focused on the recovery of these metals from water using different techniques. In this context, our study consists of evaluating an efficient and eco-friendly pathway of competitive recovery of heavy metals (Cd, Cr and As) from aqueous solutions by adsorption using raw rock. This adsorbent was characterized before and after the adsorption process by several techniques. The multi-metals adsorption process in the batch mode was undertaken to evaluate the effect of adsorbent mass, contact time, pH, Temperature, and initial heavy metals concentration. The kinetic data were analyzed using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetic models. According to the modeling of the experimental results, the adsorption kinetics of heavy metals were adapted to the pseudo-second-order model. The adsorption isotherms were evaluated by the Langmuir and Freundlich isotherm models. The experimental isotherm data of heavy metals were better fitted with the Langmuir model rather than Freundlich isotherm models. The maximum experimental adsorption capacities (Qmax) predicted by the Langmuir model are 15.23 mg/g for Cd (II), 17.54 mg/g for Cr (VI) and 16.36 mg/g for As (III). The values of thermodynamic parameters revealed that the heavy metals adsorption was exothermic, favorable, and spontaneous in nature. The desorption process of heavy metals showed that this raw rock had excellent recycling capacity. Based on the results, these untreated clays can be used as inexpensive and environmentally friendly adsorbents to treat water contaminated by heavy metals.


2021 ◽  
Vol 10 (2) ◽  
pp. 70-76
Author(s):  
Fatimah ◽  
Siti Hardianti ◽  
Stephen Octaviannus

The purpose of this study was to determine the response and performance of fly ash as an adsorbent activated by HCl and impregnated with FeCl3 to absorb phenol. In this study, the fly ash activation process was carried out using 8 M HCl for 2 hours and impregnated with 2% FeCl3 for 2 hours. Activated and impregnated fly ash was analyzed using a Scanning Electron Microscope-Energy Dispersive Spectrophotometer (SEM-EDX). The results of the activated and impregnated fly ash surface using SEM-EDX showed that there were changes in morphology and functional groups. Then activated and impregnated fly ash was used to absorb phenol at a time variation of 60 minutes, 120 minutes, 180 minutes, 240 minutes and 300 minutes. At 180 minutes of contact time, the equilibrium point is obtained with an absorption efficiency of 90.5%. Second-order pseudo kinetics were used for phenol adsorption by Fe+ impregnated fly ash (R2 = 0.9916). The isotherm models used in the phenol adsorption process by fly ash impregnated with Fe+ are Langmuir Isotherm (R2 = 0.9927) and Freundlich Isotherm (R2 = 0.9984), which means that the adsorption process occurs in multi-layer and mono-layers.


Konversi ◽  
2015 ◽  
Vol 4 (1) ◽  
pp. 17
Author(s):  
Ari Susandy Sanjaya ◽  
Rizcy Paramita Agustine

Abstrak- Logam Pb merupakan salah satu pencemar lingkungan dan dapat mengakibatkan kematian atau gangguan kesehatan dalam waktu singkat. Salah satu cara untuk mengatasi masalah pencemaran Pb adalah dengan menggunakan arang aktif dari kulit pisang. Penelitian ini bertujuan untuk menentukan model kinetika yang sesuai pada proses adsorpsi Pb dengan melihat daya jerap arang aktif kulit pisang dalam berbagai variasi massa (1 g; 1,5g dan 2 g) dan waktu kontak (20 menit, 40 menit dan 60 menit). Analisa Kinetika didasarkan pada kinetika orde nol, orde satu dan orde dua serta menentukan kapasitas maksimum adsorpsi arang atif kulit pisang  terhadap logam Pb. Persamaan yang digunakan dalam proses adsorpsi adalah persamaan adsorpsi Isoterm Langmuir dan Freundlich. Dari hasil analisa, waktu optimum adsorbsi terjadi pada waktu 60 menit.  Kinetika adsorbsi logam Pb dengan arang aktif dari kulit pisang pada massa 1 dan 2 g mengikuti model kinetika orde 2, sedangkan pada massa 1,5 g mengikuti kinetika orde 0. Persamaan adsorpsi Langmuir lebih sesuai untuk isotherm adsorpsi pada penelitian ini. Adsorpsi Pb oleh kulit pisang yang sesuai dengan pola isotherm adsorpsi Langmuir mengindikasikan bahwa adsorpsi hanya berlangsung satu lapis (monolayer). Kapasitas adsorpsi maksimum ditunjukkan oleh nilai a yang besar, yaitu 1,4582 pada massa 1 g sedangkan kekuatan interaksi antara ion Pb2+ dengan kulit pisang terjadi pada massa 2 g yang ditunjukkan dengan nilai kL yang besarnya 0,409 Kata kunci : kinetika adsorpsi, arang aktif, kulit pisang, logam Pb  Abstract- Lead metal is one of environment polluter and can cause decease or health problems in sort time. The way to solve this problem is with used the carbon active from banana peel. This research is intend to find the kinetics model that appropriate in Pb adsorption process by knowing absorption of banana peel carbon active within mass variations (1; 1,5 and 2 g) and contact time (20, 40, and 60 minutes). Kinetics analysis are based from orde zero,one, and two and find the maximum capacity of adsorption from banana peel carbon active to lead metal. Equation which using at the adsorption process are Langmuir and Freundlich isotherm equations. From the analysis results, optimum time is at 60 minutes.kinetics of Pb absorption with carbon active from banana peel in mass 1 and 2 gr following kinetics model orde 2, then in mass 1,5 g following kinetics model orde 0. Langmuir equation is more appropriate in this research. Pb absorption from the banana peel that appropriate to Langmuir isotherm system is indicates adsorption was occur in one layer (monolayer). Maximum adsorption capacity is showing by the bigger value from a, that is 1,4582 in mass 1 g then interaction power of Pb with the banana peel was occur in mass 2 gr which showing with the value of kL is 0,4090.  Keywords : adsorption kinetics, carbon active, banana peel, Pb metal


2017 ◽  
Vol 2 (1) ◽  
pp. 13-26
Author(s):  
Tengku Khamanur Azma Tg. Mohd Zamri ◽  
Mimi Sakinah Abd Munaim ◽  
Zularisam Ab Wahid

Natural dye extracted from the rhizome of Curcuma longa L. were applied to bamboo yarns using exhaustion dyeing process. This study investigates the dyeing behaviour of Curcumin; the major color component isolated from rhizomes of Curcuma longa L.on bamboo yarn. Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich isotherm models were used to test the adsorption process of curcumin on bamboo yarn. Comparison of regression coefficient value indicated that the Freundlich isotherm most fitted to the adsorption of curcumin onto bamboo yarn. Furthermore, the kinetics study on this research fitted the pseudo-second order model which indicates that the basis of interaction was chemical adsorption.


2017 ◽  
Vol 13 (27) ◽  
pp. 425
Author(s):  
Azeh Yakubu ◽  
Gabriel Ademola Olatunji ◽  
Folahan Amoo Adekola

This investigation was conducted to evaluate the adsorption capacity of nanoparticles of cellulose origin. Nanoparticles were synthesized by acid hydrolysis of microcrystalline cellulose/cellulose acetate using 64% H3PO4 and characterized using FTIR, XRD, TGA-DTGA, BET and SEM analysis. Adsorption kinetics of Pb (II) ions in aqueous solution was investigated and the effect of initial concentration, pH, time, adsorbent dosage and solution temperature. The results showed that adsorption increased with increasing concentration with removal efficiencies of 60% and 92.99% for Azeh2 and Azeh10 respectively for initial lead concentration of 3 mg/g. The effects of contact time showed that adsorption maximum was attained within 24h of contact time. The maximum adsorption capacity and removal efficiency were achieved at pH6. Small dose of adsorbent had better performance. The kinetics of adsorption was best described by the pseudo-second-Order model while the adsorption mechanism was chemisorption and pore diffusion based on intra-particle diffusion model. The isotherm model was Freundlich. Though, all tested isotherm models relatively showed good correlation coefficients ranging from 0.969-1.000. The adsorption process was exothermic for Azeh-TDI, with a negative value of -12.812 X 103 KJ/mol. This indicates that the adsorption process for Pb by Azeh-TDI was spontaneous. Adsorption by Azeh2 was endothermic in nature.


2020 ◽  
Vol 81 (1) ◽  
pp. 159-169
Author(s):  
Feyza Ergüvenerler ◽  
Şerif Targan ◽  
Vedia Nüket Tirtom

Abstract Simple, fast, effective, low cost and waste biosorbents, lemon, bean and artichoke shells, were used to remove lead (II) ions from aqueous solution. The influence of pH, contact time, temperature and lead (II) concentration of the removal process was investigated. The sufficient contact time was deemed 10 minutes for bean and artichoke shells and 60 minutes for lemon shells for Pb(II) ions. The thermodynamic parameters, such as standard free energy (ΔG), standard enthalpy (ΔH), and standard entropy (ΔS) of the adsorption process were calculated as −5.6786, −5.5758, −3.1488 kJmol−1 for ΔG, −7.2791, −20.285, −9.5561 kJ mol−1 for ΔH, −0.00545, −0.05017, −0.02185 kJ mol−1 K−1 for ΔS, respectively, for lemon, artichoke and bean shells. Maximum adsorption capacities of lead (II) were observed as 61.30 mg g−1, 88.5 mg g−1 and 62.81 mg g−1, respectively, for lemon, bean and artichoke shells according to the Freundlich isotherm model at 20 °C. Scanning electron microscope (SEM) and energy-dispersive X-ray detector (EDX) were used to characterize the surface morphology of the adsorbents. Consequently, Pb(II) removal using lemon, bean and artichoke shells would be an effective method for the economic treatment of wastewater.


2018 ◽  
Vol 67 (3) ◽  
pp. 279-290 ◽  
Author(s):  
Haider M. Zwain ◽  
Mohammadtaghi Vakili ◽  
Irvan Dahlan

Abstract A novel RHA/PFA/CFA composite adsorbent was synthesized from rice husk ash (RHA), palm oil fuel ash (PFA), and coal fly ash (CFA) by modified sol-gel method. Effect of different parameters such as adsorbent dosage, contact time, and pH were studied using batch experiment to optimize the maximum zinc (Zn2+) and nickel (Ni2) adsorption conditions. Results showed that the maximum adsorption condition occurred at adsorbent amount of 10 g/L, contact time of 60 min, and pH 7. At this condition, the removal efficiencies were 81% and 61% for Zn2+ and Ni2+, in which the adsorption capacities (qmax) were 21.74 mg/g and 17.85 mg/g, respectively. Adsorption behavior of RHA/PFA/CFA composite adsorbent was studied through the various isotherm models at different adsorbent amounts. The results indicated that the Freundlich isotherm model gave an excellent agreement with the experimental conditions. Based on the results obtained from the kinetic studies, pseudo-second-order was suitable for the adsorption of Ni2+ and Zn2+, compared to the pseudo-first-order model. The results presented in this study showed that RHA/PFA/CFA composite adsorbent successfully adsorbed Zn2+ and Ni2.


2019 ◽  
Vol 107 (5) ◽  
pp. 377-386 ◽  
Author(s):  
Cansu Endes Yılmaz ◽  
Mahmoud A.A. Aslani ◽  
Ceren Kütahyalı Aslani

Abstract Adsorption of thorium onto nitric acid modified multi-walled carbon nanotubes was investigated by central composite design as a function of contact time, pH, initial thorium concentration and temperature. The results showed that optimum uptake capacity was 65.75±2.23 mg·g−1 with respect to pH=4, initial thorium concentration of 100 mg·L−1, 25 °C and 15 min contact time. Thermodynamic parameters [standard enthalpy (ΔH0), entropy (ΔS0), and free energy (ΔG0)] were calculated, and the results indicated that adsorption was endothermic. Langmuir, Freundlich and Dubinin-Radushkevich isotherms have been investigated in order to characterize the adsorption process in the range of 25–100 mg·L−1 initial thorium concentration. The Freundlich isotherm is the best suited as a model because it has the highest correlation coefficient (R2=0.9485). The pseudo-second order kinetics well defined the adsorption process.


2019 ◽  
Vol 9 (21) ◽  
pp. 4486 ◽  
Author(s):  
Candelaria Tejada-Tovar ◽  
Angel Darío Gonzalez-Delgado ◽  
Angel Villabona-Ortiz

The removal of water pollutants has been widely addressed for the conservation of the environment, and novel materials are being developed as adsorbent to address this issue. In this work, different residual biomasses were employed to prepare biosorbents applied to lead (Pb(II)) ion uptake. The choice of cassava peels (CP), banana peels (BP), yam peels (YP), and oil palm bagasse (OPB) was made due to the availability of such biomasses in the Department of Bolivar (Colombia), derived from agro-industrial activities. The materials were characterized by ultimate and proximate analysis, Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmett-Teller analysis (BET), Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray Spectroscopy (EDS) in order to determine the physicochemical properties of bioadsorbents. The adsorption tests were carried out in batch mode, keeping the initial metal concentration at 100 ppm, temperature at 30 °C, particle size at 1 mm, and solution pH at 6. The experimental results were adjusted to kinetic and isotherm models to determine the adsorption mechanism. The remaining concentration of Pb(II) in solution was measured by atomic absorption at 217 nm. The functional groups identified in FTIR spectra are characteristic of lignocellulosic materials. A high surface area was found for all biomaterials with the exception of yam peels. A low pore volume and size, related to the mesoporous structure of these materials, make these bioadsorbents a suitable alternative for liquid phase adsorption, since they facilitate the diffusion of Pb(II) ions onto the adsorbent structure. Both FTIR and EDS techniques confirmed ion precipitation onto adsorbent materials after the adsorption process. The adsorption tests reported efficiency values above 80% for YP, BP, and CP, indicating a good uptake of Pb(II) ions from aqueous solution. The results reported that Freundlich isotherm and pseudo-second order best fit experimental data, suggesting that the adsorption process is governed by chemical reactions and multilayer uptake. The future prospective of this work lies in the identification of alternatives to reuse Pb(II)-contaminated biomasses after heavy metal adsorption, such as material immobilization.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
I. Osasona ◽  
O. O. Ajayi ◽  
A. O. Adebayo

The feasibility of using powdered cow hooves (CH) for removing Ni2+ from aqueous solution was investigated through batch studies. The study was conducted to determine the effect of pH, adsorbent dosage, contact time, adsorbent particle size, and temperature on the adsorption capacity of CH. Equilibrium studies were conducted using initial concentration of Ni2+ ranging from 15 to 100 mgL−1 at 208, 308, and 318 K, respectively. The results of our investigation at room temperature indicated that maximum adsorption of Ni2+ occurred at pH 7 and contact time of 20 minutes. The thermodynamics of the adsorption of Ni2+ onto CH showed that the process was spontaneous and endothermic. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were used to quantitatively analysed the equilibrium data. The equilibrium data were best fitted by Freundlich isotherm model, while the adsorption kinetics was well described by pseudo-second-order kinetic equation. The mean adsorption energy obtained from the D-R isotherm revealed that the adsorption process was dominated by physical adsorption. Powdered cow hooves could be utilized as a low-cost adsorbent at room temperature under the conditions of pH 7 and a contact time of 20 minutes for the removal of Ni(II) from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document