scholarly journals The development of reporter system for the investigation of molecular mechanisms of ecdysone response

2019 ◽  
Vol 485 (4) ◽  
pp. 515-518
Author(s):  
M. Yu. Mazina ◽  
A. N. Krasnov ◽  
P. G. Georgiev ◽  
N. E. Vorobyeva

To study the mechanisms of transcriptional regulation, a convenient experimental approach is to use the artificial chimeric constructs, carrying the regulatory elements of interest. In the present work, we describe the creation and characterization of a novel genetic construct, which makes possible to study the transcriptional regulation of the early-late gene of the ecdysone cascade. Using the data of genome-wide experiments, we have isolated the main regulatory region of the hr4 gene, which was successfully used to create a chimeric reporter construct expressing a fluorescent protein upon the treatment with the ecdysone hormone. This reporter system can be used to study the mechanisms of the ecdysone response, both in cell culture and in tissues, at various stages of the Drosophila development.

2002 ◽  
Vol 362 (2) ◽  
pp. 199-211
Author(s):  
Alison M. O'MAHONY ◽  
Donal A. WALSH

The amount of phosphorylase kinase in skeletal muscle is exquisitely sensitive to developmental signals such as differentiation and innervation, and is clearly regulated in such a manner so as to always maintain the γ catalytic subunit under the control of its regulatory α, β and γ subunits. To identify how the transcription of the γ subunit is regulated, we have analysed 3.8kb of the upstream regulatory region using a luciferase reporter system. A complex sequence of interdependent regulations is evident. The γ catalytic subunit gene contains two inhibitory controls with very dominant features. Also evident are an array of multiple positive regulatory elements, prominent amongst which are four E-boxes, of which two are downstream, one is upstream and one is in the middle of the CAAT-TATA core promoter. Differentiation-dependent positive regulation arises as a consequence of both E-box regulation and the activation of at least one other regulatory element. The primary mode of transcriptional regulation of the γ catalytic subunit gene appears to occur by the relief of regulation of an otherwise default inhibitory status. It is noteworthy that such a mode of regulation mirrors the regulation of the enzymic activity of many protein kinases, including phosphorylase kinase. With phosphorylase kinase, both its transcriptional regulation as well as the regulation of the protein itself, are primed to maintain the γ catalytic subunit either unexpressed or inactivate respectively, until a positive signal occurs to override an otherwise dominant default inhibitory condition.


2021 ◽  
Vol 22 (14) ◽  
pp. 7390
Author(s):  
Nicole Wesch ◽  
Frank Löhr ◽  
Natalia Rogova ◽  
Volker Dötsch ◽  
Vladimir V. Rogov

Ubiquitin fold modifier 1 (UFM1) is a member of the ubiquitin-like protein family. UFM1 undergoes a cascade of enzymatic reactions including activation by UBA5 (E1), transfer to UFC1 (E2) and selective conjugation to a number of target proteins via UFL1 (E3) enzymes. Despite the importance of ufmylation in a variety of cellular processes and its role in the pathogenicity of many human diseases, the molecular mechanisms of the ufmylation cascade remains unclear. In this study we focused on the biophysical and biochemical characterization of the interaction between UBA5 and UFC1. We explored the hypothesis that the unstructured C-terminal region of UBA5 serves as a regulatory region, controlling cellular localization of the elements of the ufmylation cascade and effective interaction between them. We found that the last 20 residues in UBA5 are pivotal for binding to UFC1 and can accelerate the transfer of UFM1 to UFC1. We solved the structure of a complex of UFC1 and a peptide spanning the last 20 residues of UBA5 by NMR spectroscopy. This structure in combination with additional NMR titration and isothermal titration calorimetry experiments revealed the mechanism of interaction and confirmed the importance of the C-terminal unstructured region in UBA5 for the ufmylation cascade.


2018 ◽  
Vol 19 (10) ◽  
pp. 3272 ◽  
Author(s):  
Manel Benhassine ◽  
Sylvain Guérin

Because it accounts for 70% of all eye cancers, uveal melanoma (UM) is therefore the most common primary ocular malignancy. In this study, we investigated the molecular mechanisms leading to the aberrant expression of the gene encoding the serotonin receptor 2B (HTR2B), one of the most discriminating among the candidates from the class II gene signature, in metastatic and non-metastatic UM cell lines. Transfection analyses revealed that the upstream regulatory region of the HTR2B gene contains a combination of alternative positive and negative regulatory elements functional in HTR2B− but not in HTR23B+ UM cells. We demonstrated that both the transcription factors nuclear factor I (NFI) and Runt-related transcription factor I (RUNX1) interact with regulatory elements from the HTR2B gene to either activate (NFI) or repress (RUNX1) HTR2B expression in UM cells. The results of this study will help understand better the molecular mechanisms accounting for the abnormal expression of the HTR2B gene in uveal melanoma.


2021 ◽  
Author(s):  
Sneha Gopalan ◽  
Yuqing Wang ◽  
Nicholas W. Harper ◽  
Manuel Garber ◽  
Thomas G Fazzio

Methods derived from CUT&RUN and CUT&Tag enable genome-wide mapping of the localization of proteins on chromatin from as few as one cell. These and other mapping approaches focus on one protein at a time, preventing direct measurements of co-localization of different chromatin proteins in the same cells and requiring prioritization of targets where samples are limiting. Here we describe multi-CUT&Tag, an adaptation of CUT&Tag that overcomes these hurdles by using antibody-specific barcodes to simultaneously map multiple proteins in the same cells. Highly specific multi-CUT&Tag maps of histone marks and RNA Polymerase II uncovered sites of co-localization in the same cells, active and repressed genes, and candidate cis-regulatory elements. Single-cell multi-CUT&Tag profiling facilitated identification of distinct cell types from a mixed population and characterization of cell type-specific chromatin architecture. In sum, multi-CUT&Tag increases the information content per cell of epigenomic maps, facilitating direct analysis of the interplay of different proteins on chromatin.


2020 ◽  
Author(s):  
Felix Pahmeier ◽  
Christoper J Neufeldt ◽  
Berati Cerikan ◽  
Vibhu Prasad ◽  
Costantin Pape ◽  
...  

ABSTRACTPositive-strand RNA viruses have been the etiological agents in several major disease outbreaks over the last few decades. Examples of that are flaviviruses, such as dengue virus and Zika virus that cause millions of yearly infections and spread around the globe, and coronaviruses, such as SARS-CoV-2, which is the cause of the current pandemic. The severity of outbreaks caused by these viruses stresses the importance of virology research in determining mechanisms to limit virus spread and to curb disease severity. Such studies require molecular tools to decipher virus-host interactions and to develop effective interventions. Here, we describe the generation and characterization of a reporter system to visualize dengue virus and SARS-CoV-2 replication in live cells. The system is based on viral protease activity causing cleavage and nuclear translocation of an engineered fluorescent protein that is expressed in the infected cells. We show the suitability of the system for live cell imaging and visualization of single infected cells as well as for screening and testing of antiviral compounds. Given the modular building blocks, the system is easy to manipulate and can be adapted to any virus encoding a protease, thus offering a high degree of flexibility.IMPORTANCEReporter systems are useful tools for fast and quantitative visualization of viral replication and spread within a host cell population. Here we describe a reporter system that takes advantage of virus-encoded proteases that are expressed in infected cells to cleave an ER-anchored fluorescent protein fused to a nuclear localization sequence. Upon cleavage, the fluorescent protein translocates to the nucleus, allowing for rapid detection of the infected cells. Using this system, we demonstrate reliable reporting activity for two major human pathogens from the Flaviviridae and the Coronaviridae families: dengue virus and SARS-CoV-2. We apply this reporter system to live cell imaging and use it for proof-of-concept to validate antiviral activity of a nucleoside analogue. This reporter system is not only an invaluable tool for the characterization of viral replication, but also for the discovery and development of antivirals that are urgently needed to halt the spread of these viruses.


2020 ◽  
Vol 21 (17) ◽  
pp. 5947 ◽  
Author(s):  
Hao Zhang ◽  
Shuang Li ◽  
Mengyao Shi ◽  
Sheliang Wang ◽  
Lei Shi ◽  
...  

NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER (PTR) family (NPF) proteins can transport various substrates, and play crucial roles in governing plant nitrogen (N) uptake and distribution. However, little is known about the NPF genes in Brassica napus. Here, a comprehensive genome-wide systematic characterization of the NPF family led to the identification of 193 NPF genes in the whole genome of B. napus. The BnaNPF family exhibited high levels of genetic diversity among sub-families but this was conserved within each subfamily. Whole-genome duplication and segmental duplication played a major role in BnaNPF evolution. The expression analysis indicated that a broad range of expression patterns for individual gene occurred in response to multiple nutrient stresses, including N, phosphorus (P) and potassium (K) deficiencies, as well as ammonium toxicity. Furthermore, 10 core BnaNPF genes in response to N stress were identified. These genes contained 6–13 transmembrane domains, located in plasma membrane, that respond discrepantly to N deficiency in different tissues. Robust cis-regulatory elements were identified within the promoter regions of the core genes. Taken together, our results suggest that BnaNPFs are versatile transporters that might evolve new functions in B. napus. Our findings benefit future research on this gene family.


2019 ◽  
Vol 31 (1) ◽  
pp. 187
Author(s):  
S.-H. Kim ◽  
K.-H. Choi ◽  
D.-K. Lee ◽  
M. Lee ◽  
M.-H. Cho ◽  
...  

Gene OCT4 plays pivotal roles in maintaining pluripotency of early mammalian embryonic development and embryonic stem cells. It is essential to establish a reporter system based on the OCT4 promoter region for the study of pluripotency. However, there is still a lack of sufficient information about the porcine OCT4 upstream reporter system. To improve our understanding of the porcine OCT4 regulatory region, first, we conducted an investigation to find conserved regions in the porcine OCT4 promoter upstream region by sequence-based comparative analysis using various mammalian genome sequences. A similarity of nucleotide sequences of the 5′ upstream region was low among mammalian species. However, the OCT4 promoter and 4 regulatory regions including distal and proximal enhancer elements have a high similarity. Next, a functional analysis of the porcine OCT4 promoter region was conducted. Luciferase reporter assay indicated that the porcine OCT4 distal enhancer and proximal enhancer are highly activated in mouse embryonic stem cells and embryonic carcinoma cells, respectively (n=3). Comparison analysis of naïve (Tbx3, Nr0b1, Rex1, Esrrb, Nanog, Klf2) or primed (Gata6, Mixl1, Fgf5, Otx2) state marker gene expression in a dual-reporter assay using pOCT4-DE-eGFP and pOCT4-PE-DsRed2 showed that expression of naïve and primed markers were up-regulated in cells with high green fluorescent protein and red fluorescent protein expression, respectively (n=3). Porcine OCT4-upstream region-based reporter constructs showed exclusive expression patterns depending on the state of pluripotency. This work could provide basic information for the porcine OCT4 upstream region and the various porcine OCT4-fluorescence reporter constructs, which can be applied to study species-specific pluripotency in early embryo development and for the establishment of embryonic stem cells in pigs. This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through the Development of High Value-Added Food Technology Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA, 118042-03-1-HD020).


Microbiology ◽  
2006 ◽  
Vol 152 (12) ◽  
pp. 3701-3722 ◽  
Author(s):  
Bénédicte Rognon ◽  
Zuzana Kozovska ◽  
Alix T. Coste ◽  
Giacomo Pardini ◽  
Dominique Sanglard

Upregulation of the MDR1 (multidrug resistance 1) gene is involved in the development of resistance to antifungal agents in clinical isolates of the pathogen Candida albicans. To better understand the molecular mechanisms underlying the phenomenon, the cis-acting regulatory elements present in the MDR1 promoter were characterized using a β-galactosidase reporter system. In an azole-susceptible strain, transcription of this reporter is transiently upregulated in response to either benomyl or H2O2, whereas its expression is constitutively high in an azole-resistant strain (FR2). Two cis-acting regulatory elements within the MDR1 promoter were identified that are necessary and sufficient to confer the same transcriptional responses on a heterologous promoter (CDR2). One, a benomyl response element (BRE), is situated at position −296 to −260 with respect to the ATG start codon. It is required for benomyl-dependent MDR1 upregulation and is also necessary for constitutive high expression of MDR1. A second element, termed H 2O2 response element (HRE), is situated at position −561 to −520. The HRE is required for H2O2-dependent MDR1 upregulation, but dispensable for constitutive high expression. Two potential binding sites (TTAG/CTAA) for the bZip transcription factor Cap1p (Candida AP-1 protein) lie within the HRE. Moreover, inactivation of CAP1 abolished the transient response to H2O2. Cap1p, which has been previously implicated in cellular responses to oxidative stress, may thus play a trans-acting and positive regulatory role in the H2O2-dependent transcription of MDR1. A minimal BRE (−290 to −273) that is sufficient to detect in vitro sequence-specific binding of protein complexes in crude extracts prepared from C. albicans was also defined. Interestingly, the sequence includes a perfect match to the consensus binding sequence of Mcm1p, raising the possibility that MDR1 may be a direct target of this MADS box transcriptional activator. In conclusion, while the identity of the trans-acting factors that bind to the BRE and HRE remains to be confirmed, the tools developed during this characterization of the cis-acting elements of the MDR1 promoter should now serve to elucidate the nature of the components that modulate its activity.


2020 ◽  
Author(s):  
Misty Good ◽  
Tianjiao Chu ◽  
Patricia Shaw ◽  
Lila S. Nolan ◽  
Lora McClain ◽  
...  

AbstractNeonatal necrotizing enterocolitis (NEC) is a devastating and unpredictable gastrointestinal disease with a high mortality rate in premature infants. Currently, no predictive or diagnostic biomarkers exist for NEC. Clinical intervention is reactive to the overt manifestations of disease resulting in high levels of morbidity and mortality. To better understand the molecular mechanisms that underpin NEC, we have undertaken a high resolution genome wide epigenomic analysis using solution phase hybridization and next generation DNA sequencing of bisulfite converted DNA. Our data reveal a broad and significant genomic hypermethylation in surgical NEC tissues compared to non-NEC controls. These changes were found to be far more pronounced in regions outside CpG islands and gene regulatory elements, which suggests that NEC-specific hypermethylation is not a non-specific global phenomenon. We identified a number of important biological pathways that are dysregulated in NEC and observed a clear association between NEC methylation changes and gene expression. Significantly, we found that the same patterns of global methylation identified in surgical NEC tissue are also detectable in stool samples from affected infants. To our knowledge, this is the first evidence of a methylomic signature that is both associated with NEC and detectable non-invasively. These findings point towards a new opportunity for the development of novel screening, diagnostic and phenotyping methods for NEC that could be deployed in the NICU for improved detection of this devastating disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Zhao ◽  
Yonghui Liu ◽  
Lin Li ◽  
Haijun Meng ◽  
Ying Yang ◽  
...  

Basic helix-loop-helix (bHLH) proteins are transcription factors (TFs) that have been shown to regulate anthocyanin biosynthesis in many plant species. However, the bHLH gene family in walnut (Juglans regia L.) has not yet been reported. In this study, 102 bHLH genes were identified in the walnut genome and were classified into 15 subfamilies according to sequence similarity and phylogenetic relationships. The gene structure, conserved domains, and chromosome location of the genes were analyzed by bioinformatic methods. Gene duplication analyses revealed that 42 JrbHLHs were involved in the expansion of the walnut bHLH gene family. We also characterized cis-regulatory elements of these genes and performed Gene Ontology enrichment analysis of gene functions, and examined protein-protein interactions. Four candidate genes (JrEGL1a, JrEGL1b, JrbHLHA1, and JrbHLHA2) were found to have high homology to genes encoding bHLH TFs involved in anthocyanin biosynthesis in other plants. RNA sequencing revealed tissue- and developmental stage-specific expression profiles and distinct expression patterns of JrbHLHs according to phenotype (red vs. green leaves) and developmental stage in red walnut hybrid progeny, which were confirmed by quantitative real-time PCR analysis. All four of the candidate JrbHLH proteins localized to the nucleus, consistent with a TF function. These results provide a basis for the functional characterization of bHLH genes and investigations on the molecular mechanisms of anthocyanin biosynthesis in red walnut.


Sign in / Sign up

Export Citation Format

Share Document