scholarly journals In–Vitro Antibacterial and Antifungal Efficacy of Greenly Fabricated Senna alata Leaf Extract Silver Nanoparticles and Silver Nanoparticle-Cream Blend

Author(s):  
Bukola Christianah Adebayo-Tayo ◽  
Samuel Oluwadara Borode ◽  
Solomon Omoniyi Alao

Nanoparticles biosynthesis has been extensively studied for its biomedical applications. In this study, the in-vitro antibacterial and antifungal activity of greenly fabricated silver nanoparticles (NPs) from Senna alata leaf extract (SaAgNPs) and silver nanoparticle cream blend (SaAgNPs-cream blend) were investigated. The SaAgNPs were characterized using UV-visible spectrophotometry, FTIR, SEM, TGA, DLS, EDX, and XRD. The presence of surface plasmon band around 500 nm indicates AgNPs formation and functional groups such as alkenes, carboxylic acids, and alkyl aryl ether responsible for capping and stabilization of the nanoparticles. The SaAgNPs were spherical and 1.00 µm in size; TGA shows the formation of stable SaAgNPs, DLS shows 1.8 % intensity with 1905 nm average diameter and a polydispersity index of 0.595. EDX analysis confirmed the formation of pure silver nanoparticles. SaAgNPs supported the production of cosmetically acceptable SaAgNPs-cream blend with appropriate pH and viscosity. SaAgNPs and the SaAgNPs cream-blends had antibacterial activity against all and some of the test bacterial and fungal isolates. SaAgNPs had the highest activity against Pseudomonas aeruginosa 27853, Rhizopus sp. and Candida tropicalis with a zone of 16 mm and 30 mm. The cream-blends had activity against 68.75 % and 75 % of the test bacteria and fungi with the highest activity against Streptococcus epidermidis B (7.0 mm) and Candida albicans B (8.0 mm). In conclusion, the crude Senna alata leaf extracts, the bio-fabrication SaAgNPs and SaAgNPs-cream blend have antibacterial antifungal potentials which can be effectively utilized for the control of pathogenic bacteria and fungi.

2019 ◽  
Vol 2 (1) ◽  
pp. 19
Author(s):  
Murni Halim

A study was carried out to screen for phytochemical constituents and assess the antioxidant and antimicrobial activities of Senna alata and Senna tora leaf extracts. The leaves were first dried at room temperature and 50°C in an oven prior to solvent extraction using ethanol and methanol. The in-vitro qualitative assays showed that both S. alata and S. tora leaf extracts contained bioactive and secondary metabolites components such as tannins, steroids, saponin, terpenoids, glycosides, flavonoids and phenols. The antioxidant activity and capacity test were carried out by conducting free radical of 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and Ferric reduction antioxidant plasma (FRAP) assays. Both assays showed S. tora leaf extract has higher antioxidant capacity than S. alata leaf extract. The efficacy of these leaf extracts were tested against skin pathogens through agar well diffusion method. S. alata extract showed an inhibition zone (1.15 – 1.59 mm) against Pseudomonas aeruginosa while S. tora extracts exhibited a strong antimicrobial activity against S. epidermidis (inhibition zone of 12 – 16.94 mm) followed by P. aeruginosa (inhibition zone of 1 – 1.59 mm). Nonetheless, no inhibition zone was observed for S. aureus by both leaf extracts. The phytochemicals and antioxidant constituents as well as inhibitory potential on skin pathogens possessed by S. alata and S. tora leave highlighted their potential utilization in the development of natural drugs or cosmetics to treat skin related diseases or infections.


2020 ◽  
Vol 13 (4) ◽  
pp. 2003-2014
Author(s):  
Arun Kumar ◽  
Yashika Garg

Background:Calophylluminophyllum is an evergreen tree with ethno-medical value growing along the seashores and islands of the Pacific and Indian Ocean. All parts of the plant such as bark, seeds and leaves have diverse medicinal uses such as an antiseptic, analgesic in wound healing, astringent, diuretic, purgative and expectorant. Although many species of calophyllum have been studied phytochemically for pharmacological properties, reports on inophyllum species are scanty. Aim of the study:Keeping inview it’s medical importance and availability in India as well as the rapid development of resistance by pathogens to the commonly used synthetic antibiotics,the pharmacological effects of C. inophyllum leaf extract (CIE) on HIV, bacteria and fungi causative of many human diseases was assessed in this study. Material and Methods: Isolation of the pure compounds from the ethanolic CIE was performed by gross column chromatography and tested against lyophilized forms of 8 fungal and 14 bacterial strains grown on Sabouraud’s dextrose agar and nutrient agar media respectively. Fractions and pure compounds isolated from CIE were evaluated against HIV by the HIV-RT inhibition assay by using the RT assay kit(Roche). The results were tabulated and analysed. Results: Among the purified compounds, Inophyllum C & E exhibited significant antibacterial and antifungal properties. Moreover, Inophyllum E was more potent than Inophyllum C in inhibiting the tested strains of bacteria and fungi whereasInophyllum B shows highest antiretroviral activity. Conclusion:We conclude that CIEis aneffective antimicrobial agent against common human pathogens tested in this in-vitro pharmacological evaluation of CIE.


Author(s):  
Joseph Olowo Arogbodo ◽  
Oyetayo Bolanle Faluyi ◽  
Festus Omotere Igbe

Purpose: The study aims to assess the antimicrobial activity of ethanolic leaf extracts of Hibiscus asper and Hibiscus sabdariffa against eight bacterial isolates. Materials and Methods:  An in vitro Antimicrobial activity of ethanolic leaf extract of the two plants against eight nosocomical and pathogenic bacteria viz; Pseudomonas aeruginosa (PAE), Proteus vulgaris (PVU), Klebsiella aerogenes (KAE), Staphylococcus aureus (SAU), Bacillus cereus (BCE), Escherichia coli (ECO), Moraxella catarrhalis (MCA) and Salmonella typhi (STY) was carried out using agar well diffusion assay with the concentration range of 3.13 – 100 mg/mL. Results: H. asper and H. sabdariffa showed significant difference (p< 0.05) in antimicrobial activity against BCE over the rest of the isolates. Inhibition zone diameters exhibited by the isolates to ethanolic leaf extract of H. asper was in descending order of BCE (15.00 ± 1.00a) >ECO (11.67 ± 0.58b) >SAU (7.67 ± 0.58c) >PAE (6.67 ± 0.58d) >STY (5.67 ± 0.58e) while that of H. sabdariffa was in the order BCE (15.33 ± 1.15a) > MCA (11.33 ± 1.15b) > SAU (11.00 ± 1.00bc) > KAE (9.67 ± 0.58c) > PAE (8.00 ± 1.00d) >PVU (7.67 ± 0.57e). PVU, KAE and MCA were resistant to the extract of H. asper while only STY was resistant to that of H. sabdariffa. Conclusion: H. sabdariffa extract demonstrated higher antimicrobial activity against the selected bacterial isolates than H. asper. However, the two extracts minimum inhibition concentrations (MICs) ranged from 25 mg/mL to 12.5 mg/mL. This is worthy of further exploration by pharmacological industries in the formulation of potent broad spectrum antibiotics for combating the present health challenge due to antimicrobial resistance.


2017 ◽  
Vol 4 (1) ◽  
pp. 10
Author(s):  
Yuliana Prasetyaningsih ◽  
Eni Kurniati ◽  
Dina Setiarini

Background: Infectious diseases are diseases caused by pathogenic bacteria such as Streptococcus pyogenes bacteria. This bacterium is a gram-positive, cocci-shaped chain that infect the respiratory tract. As a result of irrational use of antibiotics is causing bacterial resistance. Utilization of plants used in traditional medicine as an alternative by some people. Binahong (Anredera cordifolia (Ten.) Steenis) is a plant that can be used as a traditional medicine can be found easily in Indonesia. Binahong is one of the medicinal plants are thought to have antibacterial effects. Objective: To investigate the effect of leaf extracts binahong (Anredera cordifolia (Ten) Steenis) against Streptococcus pyogenes bacterial growth in vitro. Research Methods: The study was conducted in July 2014 in the Laboratory of Bacteriology of Ministry of Health polytechnic Yogyakarta. Types experimental research is real by using desain one-short case study. Binahong leaves were tested came from Yogyakarta Sleman. Analysis of the data obtained and performed descriptive statistics and presented in tables or graphs. The statistical test used is one way analysis of variance (One Way Anova). Result: The mean diameter of inhibition zone binahong leaf extract on the growth of the bacterium Streptococcus pyogenes at the smallest concentration that is 20% of 12.3 mm and largest concentration of 100% at 23.6 mm. Conclusion: there is influence binahong leaf extract against Streptococcus pyogenes growth in vitro.


Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 586 ◽  
Author(s):  
Mohammad Jalal ◽  
Mohammad Ansari ◽  
Mohammad Alzohairy ◽  
Syed Ali ◽  
Haris Khan ◽  
...  

The objective of the present study was one step extracellular biosynthesis of silver nanoparticles (AgNPs) using supernatant of Candida glabrata isolated from oropharyngeal mucosa of human immunodeficiency virus (HIV) patients and evaluation of their antibacterial and antifungal potential against human pathogenic bacteria and fungi. The mycosynthesized AgNPs were characterized by color visualization, ultraviolet-visible (UV) spectroscopy, fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The FTIR spectra revealed the binding and stabilization of nanoparticles with protein. The TEM analysis showed that nanoparticles were well dispersed and predominantly spherical in shape within the size range of 2–15 nm. The antibacterial and antifungal potential of AgNPs were characterized by determining minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC)/ minimum fungicidal concentration (MFC), and well diffusion methods. The MBC and MFC were found in the range of 62.5–250 μg/mL and 125–500 μg/mL, which revealed that bacterial strains were more susceptible to AgNPs than fungal strains. These differences in bactericidal and fungicidal concentrations of the AgNPs were due to the differences in the cell structure and organization of bacteria and yeast cells. The interaction of AgNPs with C. albicans analyzed by TEM showed the penetration of nanoparticles inside the Candida cells, which led the formation of “pits” and “pores” that result from the rupturing of the cell wall and membrane. Further, TEM analysis showed that Candida cells treated with AgNPs were highly deformed and the cells had shrunken to a greater extent because of their interaction with the fungal cell wall and membrane, which disrupted the structure of the cell membrane and inhibited the normal budding process due to the destruction and loss of membrane integrity and formation of pores that may led to the cell death.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1273
Author(s):  
María G. González-Pedroza ◽  
Liliana Argueta-Figueroa ◽  
René García-Contreras ◽  
Yaiza Jiménez-Martínez ◽  
Eduardo Martínez-Martínez ◽  
...  

Cancer is one of the most prevalent diseases in the world and requires new therapies for its treatment. In this context, the biosynthesis of silver nanoparticles (AgNPs) has been developed to treat different types of tumors. The Annona muricata plant is known for having anticancer activity. Its main compounds present in the leaves, stems and skin, allowing for its use as reducing agents. In this manuscript, AgNPs with leaf extract (AgNPs-LE) and fruit peel extract (AgNPs-PE) of A. muricata were biosynthesized obtaining an average nanoparticle diameter sizes smaller than 50 nm, being 19.63 ± 3.7 nm and 16.56 ± 4.1 nm, and with a surface plasmonic resonance (SPR) at 447 and 448 nm, respectively. The lactone functional group present in the LE and PE extracts was identified by the FTIR technique. The behavior and antiproliferation activity of AgNPs-LE and AgNPs-PE were evaluated in breast, colon and melanoma cancer cell lines. Our results showed that Annona muricata fruit peel, which is a waste product, has an antitumor effect more potent than leaf extract. This difference is maintained with AgNPs where the destruction of cancer cells was, for the first time, achieved using concentrations that do not exceed 3 μg/mL with a better therapeutic index in the different tumor strains. In conclusion, we present a low-cost one-step experimental setup to generate AgNPs-PE whose in-vitro biocompatibility and powerful therapeutic effect make it a very attractive tool worth exploiting.


2017 ◽  
Vol 82 (2) ◽  
pp. 117-125 ◽  
Author(s):  
Dongamanti Ashok ◽  
Reddy Vanaja ◽  
Mdderla Sarasija ◽  
Vijaya Lakshmi

Due to the potential antimicrobial activity of pyranochromenones and pyrazolines moieties, hybrid compounds containing both, substituted 4-Chloro-8-methyl-2-(1,3-diphenyl- -1H-pyrazol-4-yl)-1,5-dioxa-2H-phenanthren-6-ones (4a-g), have been synthesized from substituted (E)-1-(7-Hydroxy-4-methyl-8-coumarinyl)-3-(1,3-diphenyl -1H-pyrazol-4-yl)-2-propen-1-ones (3a-g) in good yield using the Vilsmeier reaction, by microwave-assisted method. The structures of all the compounds have been established on the basis of analytical and spectral data. All the synthesized compounds were tested in vitro for their antibacterial and antifungal activities. Some of the compounds have shown very good activity compared to standard drugs against all pathogenic bacteria and fungi.


Author(s):  
Shubhaisi Das ◽  
Sunanda Burman ◽  
Goutam Chandra

Background: The only remedy for up surging problem of antibiotic resistance is the discovery of antibacterial agents of natural origin. Objective: The present study was aimed at finding antibacterial potential of crude and solvent extracts of mature leaves of Plumeria pudica. Methods: Antibacterial activity of three different solvent extracts were evaluated in four human and four fish pathogenic bacteria by measuring the zone of inhibition and determining Minimum Inhibitory Concentration and Minimum Bactericidal Concentration values. Standard antibiotics were used as positive control. Preliminary phytochemical screening of most effective extract i.e., ethyl acetate extract, Fourier Transform Infra Red analysis and GC-MS analysis of the Thin Layer Chromatographic (TLC) fraction of ethyl acetate extract were done meticulously. All experiments were done thrice and analyzed statistically. Results: Crude leaf extracts and solvent extracts caused good inhibition of bacterial growth in all selected bacteria. Ethyl acetate extract showed highest inhibition zones in all tested strains with maximum inhibition (19.50±0.29 mm) in Escherichia coli (MTCC 739). MBC/MIC of the extracts indicated that all three solvent extracts were bactericidal. Preliminary phytochemical tests revealed the presence of tannins, steroids and alkaloids and FT-IR analysis revealed presence of many functional groups namely alcoholic, amide, amine salt and aldehyde groups. From the GC-MS analysis of TLC fraction of ethyl acetate extract five different bioactive compounds e.g., 2,4-ditert –butylphenyl 5-hydroxypentanoate, Oxalic acid; allyl nonyl ester, 7,9-Ditert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione, Dibutyl phthalate and 2,3,5,8-tetramethyl-decane were identified. Conclusion: Leaf extracts of P. pudica contain bioactive compounds that can be used as broad spectrum bactericidal agent.


2014 ◽  
Vol 81 (1) ◽  
pp. 432-440 ◽  
Author(s):  
T. Sotelo ◽  
M. Lema ◽  
P. Soengas ◽  
M. E. Cartea ◽  
P. Velasco

ABSTRACTGlucosinolates (GSLs) are secondary metabolites found inBrassicavegetables that confer on them resistance against pests and diseases. Both GSLs and glucosinolate hydrolysis products (GHPs) have shown positive effects in reducing soil pathogens. Information about theirin vitrobiocide effects is scarce, but previous studies have shown sinigrin GSLs and their associated allyl isothiocyanate (AITC) to be soil biocides. The objective of this work was to evaluate the biocide effects of 17 GSLs and GHPs and of leaf methanolic extracts of different GSL-enrichedBrassicacrops on suppressingin vitrogrowth of two bacterial (Xanthomonas campestrispv. campestris andPseudomonas syringaepv. maculicola) and two fungal (AlternariabrassicaeandSclerotiniascletoriorum)Brassicapathogens. GSLs, GHPs, and methanolic leaf extracts inhibited the development of the pathogens tested compared to the control, and the effect was dose dependent. Furthermore, the biocide effects of the different compounds studied were dependent on the species and race of the pathogen. These results indicate that GSLs and their GHPs, as well as extracts of differentBrassicaspecies, have potential to inhibit pathogen growth and offer new opportunities to study the use ofBrassicacrops in biofumigation for the control of multiple diseases.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 299
Author(s):  
Reetika Singh ◽  
Christophe Hano ◽  
Gopal Nath ◽  
Bechan Sharma

Carissa carandas L. is traditionally used as antibacterial medicine and accumulates many antioxidant phytochemicals. Here, we expand this traditional usage with the green biosynthesis of silver nanoparticles (AgNPs) achieved using a Carissa carandas L. leaf extract as a reducing and capping agent. The green synthesis of AgNPs reaction was carried out using 1mM silver nitrate and leaf extract. The effect of temperature on the synthesis of AgNPs was examined using room temperature (25 °C) and 60 °C. The silver nanoparticles were formed in one hour by stirring at room temperature. In this case, a yellowish brown colour was developed. The successful formation of silver nanoparticles was confirmed by UV–Vis, Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) analysis. The characteristic peaks of the UV-vis spectrum and XRD confirmed the synthesis of AgNPs. The biosynthesised AgNPs showed potential antioxidant activity through DPPH assay. These AgNPs also exhibited potential antibacterial activity against human pathogenic bacteria. The results were compared with the antioxidant and antibacterial activities of the plant extract, and clearly suggest that the green biosynthesized AgNPs can constitute an effective antioxidant and antibacterial agent.


Sign in / Sign up

Export Citation Format

Share Document