scholarly journals Leaf Anatomical-Histophytochemical Study and Evaluation of the Cytotoxicity of Ottonia frutescens Trel (Piperaceae)

2020 ◽  
Vol 11 (2) ◽  
pp. 8760-8772

To investigate the leaf histochemistry and micromorphology of Ottonia frutescens Schltdl Trel (Piperaceae), the antioxidant potential, and in vitro cytotoxic bioactivity of the leaf extract of this species against human leukemia and colorectal cells. Leaf micromorphology and histoanatomy were detailed and recorded by optical and transmission and scanning electron microscopy. The histochemical results reveal classes of secondary phytometabolites such as alkaloids, anthraquinones, coumarins, polyphenols, and saponins. Cardiotonics, flavonoids, and triterpenes compounds were not detected. All concentrations of leaf extracts showed a significant dose-dependent and time-dependent apoptotic effect with more than 90% apoptosis of U937 cells and about 60% apoptosis of COLO-205 cells in 24 h of culture under 200 μg/mL of leaf extract. In addition, the phenolic compounds present in the fractions of the sample contribute to its strong antioxidant capacity. Ottonia frutescens exhibit anatomical and histochemical characteristics similar to other Piperaceae, and for the first time, provides a new source for secondary metabolite classes that exhibit high antioxidant potential and cytotoxic bioactivity, reduce cell viability and induce apoptosis in U937 leukemic cells and COLO-205 colorectal cells.

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Larissa Dyugovskaya ◽  
Slava Berger ◽  
Andrey Polyakov ◽  
Peretz Lavie ◽  
Lena Lavie

Previously we identified, for the first time, a new small-size subset of neutrophil-derived giant phagocytes (Gϕ) which spontaneously developin vitrowithout additional growth factors or cytokines. Gϕare CD66b+/CD63+/MPO+/LC3B+and are characterized by extended lifespan, large phagolysosomes, active phagocytosis, and reactive oxygen species (ROS) production, and autophagy largely controls their formation. Hypoxia, and particularly hypoxia/reoxygenation, is a prominent feature of many pathological processes. Herein we investigated Gϕformation by applying various hypoxic conditions. Chronic intermittent hypoxia (IH) (29 cycles/day for 5 days) completely abolished Gϕformation, while acute IH had dose-dependent effects. Exposure to 24 h (56 IH cycles) decreased their size, yield, phagocytic ability, autophagy, mitophagy, and gp91-phox/p22-phoxexpression, whereas under 24 h sustained hypoxia (SH) the size and expression of LC3B and gp91-phox/p22-phoxresembled Gϕformed in normoxia. Diphenyl iodide (DPI), a NADPH oxidase inhibitor, as well as the PI3K/Akt and autophagy inhibitor LY294002 abolished Gϕformation at all oxygen conditions. However, the potent antioxidant, N-acetylcysteine (NAC) abrogated the effects of IH by inducing large CD66b+/LC3B+Gϕand increased both NADPH oxidase expression and phagocytosis. These findings suggest that NADPH oxidase, autophagy, and the PI3K/Akt pathway are involved in Gϕdevelopment.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Akshay Rajeev Geetha ◽  
Elizabeth George ◽  
Akshay Srinivasan ◽  
Jameel Shaik

Production of silver nanoparticles from the leaf extracts ofPimenta dioicais reported for the first time in this paper. Three different sets of leaves were utilized for the synthesis of nanoparticles—fresh, hot-air oven dried, and sun-dried. These nanoparticles were characterized using UV-Vis spectroscopy and AFM. The results were diverse in that different sizes were seen for different leaf conditions. Nanoparticles synthesized using sun-dried leaves (produced using a particular ratio (1 : 0.5) of the leaf extract sample and silver nitrate (1 mM), resp.) possessed the smallest sizes. We believe that further optimization of the current green-synthesis method would help in the production of monodispersed silver nanoparticles having great potential in treating several diseases.


Author(s):  
Dheeban Shankar ◽  
Basker S ◽  
Karthik S

  Objective: This study was aimed on the analysis of cytotoxic and apoptotic action of Passiflora foetida followed by identification of the functional groups responsible for the activity.Methods: In this study, cytotoxic and apoptotic effect of methanol extract of P. foetida were analyzed by treating HeLa cell line cultures with different concentrations of the extract (25, 50, 75, 100, and 125 μg/ml), and thereby the activity was ratified by 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay and propidium iodide staining. The functional groups of the bioactive compounds for the effectiveness of the treatment were known by Fourier transform infrared spectroscopy analysis (FTIR).Results: The cytotoxic activity was found to be increased in a dose-dependent manner with inhibitory concentration value of 21.55 μg/ml and showed an effective apoptosis. Further, FTIR analysis confirmed the presence of functional groups of alkaloids, flavonoids, saponins, steroids, terpenoids, phenols and cardiac glycosides which might be responsible for the aforesaid activity.Conclusion: The cytotoxic and apoptotic action of P. foetida was proved to be very effective, and the tenable functional groups were identified.


2019 ◽  
Vol 2 (1) ◽  
pp. 19
Author(s):  
Murni Halim

A study was carried out to screen for phytochemical constituents and assess the antioxidant and antimicrobial activities of Senna alata and Senna tora leaf extracts. The leaves were first dried at room temperature and 50°C in an oven prior to solvent extraction using ethanol and methanol. The in-vitro qualitative assays showed that both S. alata and S. tora leaf extracts contained bioactive and secondary metabolites components such as tannins, steroids, saponin, terpenoids, glycosides, flavonoids and phenols. The antioxidant activity and capacity test were carried out by conducting free radical of 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and Ferric reduction antioxidant plasma (FRAP) assays. Both assays showed S. tora leaf extract has higher antioxidant capacity than S. alata leaf extract. The efficacy of these leaf extracts were tested against skin pathogens through agar well diffusion method. S. alata extract showed an inhibition zone (1.15 – 1.59 mm) against Pseudomonas aeruginosa while S. tora extracts exhibited a strong antimicrobial activity against S. epidermidis (inhibition zone of 12 – 16.94 mm) followed by P. aeruginosa (inhibition zone of 1 – 1.59 mm). Nonetheless, no inhibition zone was observed for S. aureus by both leaf extracts. The phytochemicals and antioxidant constituents as well as inhibitory potential on skin pathogens possessed by S. alata and S. tora leave highlighted their potential utilization in the development of natural drugs or cosmetics to treat skin related diseases or infections.


Jurnal Biota ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 78-85
Author(s):  
Trio Ageng Prayitno ◽  
Nuril Hidayati

The use of antimicrobials from plant extracts has not been used optimally to control pathogenic agents in dragon fruit plants. The purpose of this research was to determine the antimicrobial activity of zodia (Evodia suaveolens) leaf extracts on pathogenic agents of dragon fruit plants in vitro. The research method is laboratory research with Completely Randomized Design (CRD). The antimicrobial concentrations of zodia (E. suaveolens) leaf extract used six types including 50%, 60%, 70%, 80%, 90%, and 100% with four replications. The research sample was the leaf of zodia (E. suaveolens), Pseudomonas aeruginosa and Fusarium oxysporum strain Malang. Test the antimicrobial activity of zodia (E. suaveolens) leaf extracts on the growth of P. aeruginosa and F. oxysporum using the disc-diffusion method and wells method. The research instrument was used the observation sheet of the diameter of inhibition zone indicated by the clear zone. The diameter of inhibition zone data were analyzed using the One Way ANOVA test. The results showed that the antimicrobial activity of zodia (E. suaveolens) leaf extract significantly inhibited the growth of P. aeruginosa and F. oxysporum (P <0.05). These results recommend zodia (E. suaveolens) leaf extract as an antimicrobial agent for dragon fruit plant pathogens.


2020 ◽  
Vol 7 (2) ◽  
pp. 50-55
Author(s):  
Anitha T A ◽  
Pakutharivu T ◽  
Nirubama K ◽  
Akshaya V

The traditional herbal medicines are mainly obtained from plants are used in the management of Diabetes mellitus. The main objective of this work was to assess the presence of phytochemical compounds and to evaluate the in vitro antidiabetic activity of isopropanolic extracts of Pimenta racemosa leaves by studying their α-amylase inhibitory activity and glucose transport across yeast cells. Screening of phytochemicals showed positive results for alkaloids, steroids, cardiac glycosides, terpenoids, reducing sugars, anthraquinones, and results of in vitro α-amylase inhibitory studies demonstrated there was a dose-dependent increase in percentage inhibitory activity by the isopropanolic leaf extracts of Pimenta racemosa. At a concentration of 1 mg/ml, the extract showed a percentage inhibition 33.6 and for 5 mg/ml it was 91.2. The glucose uptake study was also studied through yeast cells by analyzing theamount of glucose remaining in the medium after a specific time intervals. It serves as an indicator for the capability of isopropanolic leaf extracts of Pimenta racemosa to transport the glucose into yeast cells. As a result, we found that the isopropanolic leaf extract of Pimenta racemosa have inhibitory activity against αamylase and also, which is efficient in glucose uptake. This therapeutic potentiality of Pimenta racemosa could be exploited in the treatment of Type 2 Diabetes mellitus. Further studies are also required to elucidate whether the plant have antidiabetic potential by in vivo for corroborating the traditional claim of the plant.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Maria Fernanda Fernandes ◽  
Jessica Leiras Mota Conegundes ◽  
Nícolas de Castro Campos Pinto ◽  
Luiz Gustavo de Oliveira ◽  
Jair Adriano Kopke de Aguiar ◽  
...  

Several biological activities have been reported for leaf extracts of Cecropia pachystachya species, including antioxidant and wound healing activities. This study aims to report, for the first time, the antiaging potential of the hydroethanolic (HE) and the ethanolic (EE) extracts obtained from the leaves of C. pachystachya using different in vitro assays. Both HE and EE presented relevant antioxidant capacity in different models, including phosphomolybdenum, 1,1-diphenyl-2-picryl-hydrazyl (DPPH), carotene/linoleic acid bleaching, and thiobarbituric acid reactive substances (TBARS) assays. Their ability to prevent the production of advanced glycation end products (AGEs) was also evaluated, and both extracts showed important activity, especially HE. The extracts also stimulated the fibroblasts proliferation in vitro, specialized cells that produce several mediators which maintain the skin integrity and youthfulness. Cytotoxicity of the extracts was not observed for this lineage or HEK-293, human embryonic kidney cells widely used to evaluate cytotoxicity of chemical compounds. HE also exhibited the ability to inhibit the collagenase (metalloproteinase MMP-2) and elastase activities. The total phenolic and flavonoids contents were also determined. HPLC analysis revealed the presence of the flavonoids orientin and iso-orientin, which were quantified to be used as chemical markers. The results suggested that the extracts of C. pachystachya leaves present the potential to be used in dermocosmetic formulations to prevent the skin aging process, which attracts the attention of pharmaceutical companies and researchers interested in the development of novel ingredients likely to be used as active principles in antiaging products.


Toxins ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 494 ◽  
Author(s):  
Jan Lubawy ◽  
Arkadiusz Urbański ◽  
Lucyna Mrówczyńska ◽  
Eliza Matuszewska ◽  
Agata Światły-Błaszkiewicz ◽  
...  

Melittin (MEL) is a basic polypeptide originally purified from honeybee venom. MEL exhibits a broad spectrum of biological activity. However, almost all studies on MEL activity have been carried out on vertebrate models or cell lines. Recently, due to cheap breeding and the possibility of extrapolating the results of the research to vertebrates, insects have been used for various bioassays and comparative physiological studies. For these reasons, it is valuable to examine the influence of melittin on insect physiology. Here, for the first time, we report the immunotropic and cardiotropic effects of melittin on the beetle Tenebrio molitor as a model insect. After melittin injection at 10−7 M and 10−3 M, the number of apoptotic cells in the haemolymph increased in a dose-dependent manner. The pro-apoptotic action of MEL was likely compensated by increasing the total number of haemocytes. However, the injection of MEL did not cause any changes in the percent of phagocytic haemocytes or in the phenoloxidase activity. In an in vitro bioassay with a semi-isolated Tenebrio heart, MEL induced a slight chronotropic-positive effect only at a higher concentration (10−4 M). Preliminary results indicated that melittin exerts pleiotropic effects on the functioning of the immune system and the endogenous contractile activity of the heart. Some of the induced responses in T. molitor resemble the reactions observed in vertebrate models. Therefore, the T. molitor beetle may be a convenient invertebrate model organism for comparative physiological studies and for the identification of new properties and mechanisms of action of melittin and related compounds.


2003 ◽  
Vol 373 (3) ◽  
pp. 987-992 ◽  
Author(s):  
Eng-Kiat LIM ◽  
Gillian S. HIGGINS ◽  
Yi LI ◽  
Dianna J. BOWLES

Caffeic acid is a phenylpropanoid playing an important role in the pathways leading to lignin synthesis and the production of a wide variety of secondary metabolites. The compound is also an antioxidant and has potential utility as a general protectant against free radicals. Three glucosylated forms of caffeic acid are known to exist: the 3-O- and 4-O-glucosides and the glucose ester. This study describes for the first time a glucosyltransferase [UDP-glucose:glucosyltransferase (UGT)] that is specific for the 3-hydroxyl, and not the 4-hydroxyl, position of caffeic acid. The UGT sequence of Arabidopsis, UGT71C1, has been expressed as a recombinant fusion protein in Escherichia coli, purified and assayed against a range of substrates in vitro. The assay confirmed that caffeic acid as the preferred substrate when compared with other hydroxycinnamates, although UGT71C1 also exhibited substantial activity towards flavonoid substrates, known to have structural features that can be recognized by many different UGTs. The expression of UGT71C1 in transgenic Arabidopsis was driven by the constitutive cauliflower mosaic virus 35 S (CaMV35S) promoter. Nine independent transgenic lines were taken to homozygosity and characterized by Northern-blot analysis, assay of enzyme activity in leaf extracts and HPLC analysis of the glucosides. The level of expression of UGT71C1 was enhanced considerably in several lines, leading to a higher level of the corresponding enzyme activity and a higher level of caffeoyl-3-O-glucoside. The data are discussed in the context of the utility of UGTs for natural product biotransformations.


Antioxidants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 45 ◽  
Author(s):  
Alejandra Ribera-Fonseca ◽  
Danae Jiménez ◽  
Pamela Leal ◽  
Ismael Riquelme ◽  
Juan Carlos Roa ◽  
...  

Gastric cancer is the third main cause of cancerous tumors in humans in Chile. It is well-accepted that a diet rich in antioxidant plants could help in fighting cancer. Blueberry is a fruit crop with a high content of antioxidants. Methyl jasmonate (MeJA) is a phytohormone involved in plant defenses under stress conditions. The exogenous application of MeJA can improve the antioxidant properties in plants. We studied in vitro and in vivo anticancer action on human gastric cancer (cell line AGS) and the antioxidant properties of extracts from blueberry plants untreated and treated with MeJA. The results demonstrated that leaf extracts displayed a higher inhibition of cancer cell viability as well as greater antioxidant properties compared to fruit extracts. Besides, MeJA applications to plants improved the antioxidant properties of leaf extracts (mainly anthocyanins), increasing their inhibition levels on cell viability and migration. It is noteworthy that leaf extract from MeJA-treated plants significantly decreased cancer cell migration and expression of gastric cancer-related proteins, mainly related to the mitogen-activating protein kinase (MAPK) pathway. Interestingly, in all cases the anticancer and antioxidant properties of leaf extracts were strongly related. Despite highlighted outcomes, in vivo results did not indicate significant differences in Helicobacter pylori colonization nor inflammation levels in Mongolian gerbils unfed and fed with blueberry leaf extract. Our findings demonstrated that MeJA increased antioxidant compounds, mainly anthocyanins, and decreased the viability and migration capacity of AGS cells. In addition, leaf extracts from MeJA-treated plants were also able to decrease the expression of gastric cancer-related proteins. Our outcomes also revealed that the anthocyanin-rich fraction of blueberry leaf extracts showed higher in vitro antiproliferative and anti-invasive effects than the crude leaf extracts. However, it is still uncertain whether the leaf extracts rich in anthocyanins of blueberry plants are capable of exerting a chemopreventive or chemoprotective effect against gastric cancer on an in vivo model.


Sign in / Sign up

Export Citation Format

Share Document