scholarly journals Acute Cadmium Exposure Causes Systemic and Thromboembolic Events in Mice

2012 ◽  
pp. 73-80 ◽  
Author(s):  
M. A. FAHIM ◽  
A. NEMMAR ◽  
S. DHANASEKARAN ◽  
S. SINGH ◽  
M. SHAFIULLAH ◽  
...  

Cadmium (Cd), an environmental and industrial pollutant, poses a potential threat and affects many systems in human and animals. Although several reports on Cd toxicity were presented, the acute effect of Cd on systemic and thrombotic events was not reported so far. Cd (2.284 mg/kg) or saline (control) was injected intraperitoneally (ip), and the systemic parameters were assessed in mice. Compared to control group, acute intraperitoneal injection of Cd, in mice showed significant quickening of platelet aggregation (P<0.001) leading to pial cerebral thrombosis. Likewise, Cd exposure caused a significant increase in white blood cell numbers (P<0.05) indicating the occurrence of systemic inflammation. Also, alanine aminotransferase (ALT) (P<0.05) and creatinine (P<0.01) levels were both significantly increased. Interestingly, the superoxide dismutase activity was significantly decreased in Cd treated group compared to control group (P<0.001), suggesting the occurrence of oxidative stress. We conclude that the Cd exposure in mice causes acute thromboembolic events, oxidative stress and alter liver and kidney functions.

Author(s):  
Tijani Stephanie Abiola ◽  
Olori Ogaraya David ◽  
Farombi Ebenezer Olatunde

Aim: Manganese (Mn) is an essential trace element in many cellular processes. However, there is dearth of literature on its influence on indomethacin-induced hepatorenal damage. Therefore, this study was conducted to investigate the effect of manganese on indomethacin-induced hepatorenal damage in rats. Methods: Rats were divided into four groups of eight rats consisting of control group, indomethacin (IND) alone (20 mg/kg), Mn alone (10 mg/kg) and co-treated group that were treated orally for 14 consecutive days. Twenty four hours after treatment, under pentobarbital anesthesia, blood was collected and liver was excised to prepare homogenate and histology staining. Liver and kidney function tests aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), glutamine dehydrogenase (GLDH), sorbitol dehydrogenase (SDH), glucose-6-phosphate dehydrogenase (G6PD), bilirubin (BIL), urea, creatinine, cholesterol (CHOL), triglycerides (TG), low and high density lipoprotein (LDL and HDL), electrolytes and oxidative stress superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and lipid peroxidation (LPO) biomarkers were assessed. Results: The results showed that indomethacin caused hepatorenal damage in rats manifested with increase in serum hepatic and renal function biomarkers. But co-administration of IND with Mn significantly (p < 0.05) decreased the level of hepatorenal biomarkers. Additionally, co-administration of IND with Mn improved the antioxidant status with concomitant reduction of LPO and restored the integrity of the liver and kidney histologically. Conclusion: The results of this study emphasize that co-administration of IND with Mn to rats alleviated IND-induced hepatorenal toxicities and oxidative stress in rats.


2022 ◽  
Author(s):  
Kassahun berhane

Abstract Introduction: Parabens are used commonly as preservatives in a range of cosmetics applied to the under arm and breast area as well as popular preservatives because of their cost.Aim of the work: This study was done to evaluate the neprohepatic toxicity of parabens. Materials and methods: Thirty adult female rats were used and given paraben orally for six months at parabens at dose of 10 % of the LD50 equal to 4.6mg\kg.bw. Mushroom was given orally to at dose of 10 mg/kg/day for six months too. Results: Oral administration of BP induced biochemical and histopathological changes. Biochemical changes: BP toxicity manifested by changes in the liver and kidney function tests manifested by increase AST, ALT, Bilirubin, urea and createnine with decreases to plasma proteins in comparison to control group. Giving mushroom caused amelioration to the nephrohepatic toxicity by inducing recovery in liver and kidney functions in comparison to paraben treated group. For histopathological findings: BP induced vascular congestion in liver and kidney in association with necrotic changes in the hepatorenal epithelium which improved after mushroom treatment. Conclusion: BP induced hepatorenal toxicity which improved by mushroom treatment.


Dose-Response ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 155932581989925 ◽  
Author(s):  
Quadri K. Alabi ◽  
Rufus O. Akomolafe

Diclofenac (DF) is widely used in the treatment of pain and fever. Despite it therapeutic benefits, it triggered hepatorenal injury. Thus, the present study investigated the protective roles of kolaviron (KV) against DF-induced hepatic and renal toxicity in rats. The rats were allotted into groups: control group received propylene glycol and treatment groups received DF, which induced hepatorenal toxicity in rats and different doses of KV that prevented systemic toxicity of DF in rats. Twenty-four hours after the last treatment, all the rats were killed. Pro-inflammatory levels, markers of liver and kidney functions, oxidative stress, hematological indices, and histopathological alterations were evaluated. Diclofenac caused significant increase in the plasma levels of creatinine and urea and activities of liver enzymes, including bilirubin level, pro-inflammatory markers, and plasma prostaglandin E2 (PGE2). It also caused significant alteration in renal and hepatic PGE2, antioxidants, lipid peroxidation (malondialdehyde), and hematological indices. These toxic effects were confirmed by histological studies and levels of inflammatory infiltration (myeloperoxidase). However, KV significantly prevented or reduced the adverse effects of DF in the plasma, liver, and kidney of the rats pretreated with KV before DF administration. This study showed the efficacy of KV as hepatic and renal protector in DF-induced hepatorenal toxicity through reduction of oxidative stress and suppression of inflammation.


2021 ◽  
pp. 096032712110099
Author(s):  
F Sahindokuyucu-Kocasari ◽  
Y Akyol ◽  
O Ozmen ◽  
SB Erdemli-Kose ◽  
S Garli

Methotrexate (MTX) is a drug used in the treatment of various types of cancer and inflammatory diseases, but its clinical use has been restricted due to its toxicity. Apigenin (API) is an effective flavonoid with antioxidant and anti-inflammatory properties. The aim of this study was to determine the protective effect of API against MTX-induced liver and kidney toxicity. Four groups with 12 male mice each were used. The control and API groups were received 0.9% saline (ip) and API (3 mg/kg ip) for 4 days, respectively. The MTX group were given a single dose of MTX (20 mg/kg ip) on the fourth day. The MTX + API group were administered API for 7 days and then MTX on fourth day. Blood, liver and kidney were collected to evaluate tissue injury markers, oxidative stress biomarkers, and histopathological and immunohistochemical assessments. In MTX-treated group, significant increases in aminotransferases activities, creatinine and malondialdehyde (MDA) levels and significant decreases in catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase1 (SOD1) activities and glutathione (GSH) levels were determined compared to the control group. Furthermore, histopathological changes and significant increases in caspase-3, C-reactive protein (CRP), granulocyte colony-stimulating factor (G-CSF), and inducible nitric oxide synthase (iNOS) expressions were detected in both liver and kidney tissues of MTX-treated mice. Pretreatment with API alleviates liver and kidney toxicity by attenuating oxidative stress and tissue injury markers, histopathological alterations, and apoptosis and inflammation. These results suggest that API has a protective effect against oxidative stress and liver-kidney toxicity induced by MTX.


2020 ◽  
Vol 8 (3) ◽  
pp. 239-254 ◽  
Author(s):  
Reza Mahjub ◽  
Farzane K. Najafabadi ◽  
Narges Dehkhodaei ◽  
Nejat Kheiripour ◽  
Amir N. Ahmadabadi ◽  
...  

Background: Insulin, like most peptides, is classified as a hydrophilic and macromolecular drug that is considered as a low permeable and unstable compound in the gastrointestinal (GI) tract. The acidic condition of the stomach can degrade insulin molecules. Moreover, the presence of proteolytic activities of some enzymes such as trypsin and chymotrypsin can hydrolyze amide-bonds between various amino-acids in the structures of peptides and proteins. However, due to its simplicity and high patient compliance, oral administration is the most preferred route of systemic drug delivery, and for the development of an oral delivery system, some obstacles in oral administration of peptides and proteins including low permeability and low stability of the proteins in GI should be overcome. Objective: In this study, the effects of orally insulin nanoparticles (INPs) prepared from quaternerized N-aryl derivatives of chitosan on the biochemical factors of the liver in diabetic rats were studied. Methods: INPs composed of methylated (amino benzyl) chitosan were prepared by the PEC method. Lyophilized INPs were filled in pre-clinical capsules, and the capsules were enteric-coated with Eudragit L100. Twenty Male Wistar rats were randomly divided into four groups: group1: normal control rats, group 2: diabetic rats, group 3: diabetic rats received capsules INPs(30 U/kg/day, orally), group 4: the diabetic rats received regular insulin (5 U/kg/day, subcutaneously). At the end of the treatment, serum, liver and kidney tissues were collected. Biochemical parameters in serum were measured using spectrophotometric methods. Also, oxidative stress was measured in plasma, liver and kidney. Histological studies were performed using H and E staining . Results: Biochemical parameters, and liver and kidney injury markers in serum of the diabetic rats that received INPs improved significantly compared with the diabetic group. INPs reduced oxidative toxic stress biomarkers in serum, liver and kidney of the diabetic treated group. Furthermore, a histopathological change was developed in the treated groups. Conclusion: Capsulated INPs can prevent diabetic liver and oxidative kidney damages (similar regular insulin). Therefore oral administration of INPs appears to be safe. Lay Summary: Although oral route is the most preferred route of administration, but oral delivery of peptides and proteins is still a challenging issue. Diabetes Mellitus may lead to severe complications, which most of them are life-threatening. In this study, we are testing the toxicity of oral insulin nanoparticles in kidney and liver of rats. For this investigation, we will prepare insulin nanoparticles composed of a quaternized derivative of chitosan. The nanoparticles will be administered orally to rats and the level of oxidative stress in their liver and kidney will be determined. The data will be compared to the subcutaneous injection of insulin.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3371
Author(s):  
Bemela Mawulom Tokofai ◽  
Kokou Idoh ◽  
Oyegunle Emmanuel Oke ◽  
Amegnona Agbonon

The aim of this study was to evaluate the effect of Vernonia amygdalina leaf extract (VALE) on the carbon tetrachloride-induced hepatotoxicity (CCl4) in broiler chickens. A total of 360-day-old broilers were divided into 4 treatments of 90 birds each consisting of 6 replicates of 15 birds each. The treatments were birds offered 1 mL/kg BW saline (control group), 100 mg/kg BW VALE, 1 mL/kg BW CCl4 (CCl4-treated group), and 100 mg/kg BW VALE + 1 mL/kg BW CCl4 (VALE + CCl4 group). Blood samples were collected at 42 days of age and analyzed for the liver enzymes: alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and selected biochemical parameters. The experiment was laid out in a completely randomized design. The results obtained showed that VALE had the potential to mitigate the adverse effects of CCl4 on protein and lipid metabolism as reflected in the low serum malondialdehyde (MDA) levels, which is a marker of lipid peroxidation. The aqueous extract of Vernonia amygdalina (VA) at a dose of 100 mg/kg body weight showed a moderate hepatoprotective effect by reducing serum AST levels (p < 0.05). The levels of serum AST, ALP, ALT, and GGT were significantly increased in CCl4-treated birds compared to the control group, reflecting carbon tetrachloride-induced liver damage. The VALE + CCl4 group showed a significantly higher amount of ALP compared to birds treated with carbon tetrachloride, suggesting a hepatoprotective effect. To conclude, Vernonia amygdalina aqueous extract can be used to confer protection against hepatotoxicity, which can induce severe hepatocellular damage in birds.


Biomedicine ◽  
2020 ◽  
Vol 39 (2) ◽  
pp. 333-338
Author(s):  
Kalaivani Manokaran ◽  
Vasanthalaxmi Krishnananda Rao ◽  
Nilima . ◽  
Manjula Shimoga Durgoji Rao ◽  
Sucheta Prasanna Kumar

Introduction and Aim: Oxidative stress plays a very important role in endosulfan-induced toxic effects on reproductive organs. Vitamin C is a potent antioxidant which plays an important role in decreasing oxidative stress. The present study was aimed to investigate the protective role of vitamin C against endosulfan-induced testicular toxicity in Wistar rats. To investigate a protective effect of vitamin C against endosulfan induced toxicity on biochemical changes. Materials and Methods: Seventy male neonatal Wistar rats were divided into  seven groups. The group  I was taken as the control group, the endosulfan-treated were grouped into II (3 mg/kg body weight (BW) and group III (6 mg/kg BW), Group IV (9 mg/kg BW) and Group V (12 mg/kg BW). Group VI (9 mg/kg BW) and group VII (12 mg/kg BW) were pretreated with vitamin C (20 mg/kg BW) for 60 days. After  the experimental procedures, the testicular weight, lactate dehydrogenase (LDH) enzyme and testosterone in plasma, LDH, steroidogenic enzymes 3?-HSD and 17?-HSD in testis were evaluated. One-way ANOVA was used to determine the statistical significance. Results: Significant improvement in the testicular weight (P<0.05) , LDH (P<0.05) levels both in plasma and testis, increase in testosterone(P<0.001) and steroidogenic enzyme levels(P<0.001) was observed in the group pretreated with vitamin C treated group when compared to the endosulfan treated group. Conclusion: Vitamin C decreases the toxic effect of endosulfan on testis. The present action might be  due to its antioxidative properties.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
David Busseuil ◽  
Yanfen Shi ◽  
Mélanie Mecteau ◽  
Geneviéve Brand ◽  
Teodora Avram ◽  
...  

Purpose : Aortic valve stenosis is the most common valvular heart disease, and standard curative therapy remains open-heart surgical valve replacement. The aim of our experimental study was to determine if ApoA-I mimetic peptide infusions could induce regression of aortic valve stenosis. Methods : Twenty-seven New-Zealand White male rabbits received a cholesterol-enriched diet and vitamin D 2 until significant aortic valve stenosis was detected by echocardiography. The enriched diet was then stopped to mimic cholesterol-lowering therapy and animals were randomized to receive saline (control group, n =14) or an ApoA-I mimetic peptide (treated group, n =13), 3 times per week for 2 weeks. Serial echocardiograms and post mortem valve histology were performed. Results : Aortic valve area improved significantly in the treated group compared to controls after 7 days (20.9±0.9 mm 2 vs. 18.2±0.6 mm 2 , P <0.0001) (corresponding to increases of 15.9% and 1.9%), 10 days (21.5±1.0 mm 2 vs. 19.5±0.6 mm 2 , P =0.0032) (increases of 19.2% vs. 9.1%), and 14 days of treatment (22.4±0.9 mm 2 vs. 20.4±0.6 mm 2 , P =0.0028) (increases of 24.4% vs. 14.2%). Likewise, aortic valve thickness decreased by 19% after 14 days of treatment in the treated group (0.951±0.070 mm at baseline vs. 0.768±0.074 mm at follow-up) whereas it was unchanged in controls ( P <0.0001). Histological analysis revealed that lesion extent at the base of valve leaflets and sinuses of Valsalva was smaller in the treated compared to control group (52.8±12.5% vs. 66.7±9.9%, P =0.032). The ApoA-I mimetic peptide treatment also leads to a reduction in aortic valve calcifications as revealed by the loss of the positive relationship observed in the control group ( r =0.87, P =0.004) between calcifications area and aortic valve thickness. Conclusions : Infusions of an ApoA-I mimetic peptide lead to regression of experimental aortic valve stenosis. These positive results justify the further testing of HDL-based therapies in patients with valvular aortic stenosis. Regression of aortic stenosis, if achieved safely, could transform our clinical approach of this disease.


Author(s):  
Reza Eshrati ◽  
Mahvash Jafari ◽  
Saeed Gudarzi ◽  
Afshen Nazari ◽  
Esmaeil Samizadeh ◽  
...  

Abstract Taraxacum syriacum (TS) with natural antioxidant and pharmacological activities may be considered for treatment of oxidative stress induced by acetaminophen (APAP). The aim of this study was to evaluate the ameliorative effects of the ethanol extract of TS root against hepatorenal toxicity induced by APAP in comparison to N-acetylcysteine (NAC) as a standard drug. Thirty male Wistar rats were randomly divided into five groups. Control group; APAP (1 g/kg) group; APAP–NAC (160 mg/kg) group and APAP-TS100 and APAP-TS200 groups: APAP plus 100 and 200 mg/kg of TS extract, respectively. After 7 days treatment, serum and liver and kidney tissues were prepared and evaluated. TS extract ameliorated the increased lipid peroxidation level and decreased antioxidant enzymes activities and glutathione level in liver and kidney of APAP-treated rats. Moreover, treatment with the TS extract caused significant reduction in the histopathological damages and high levels of serum biochemical markers of hepatic and renal functions after APAP treatment. This study suggests that the extract of TS roots has dose-dependent ameliorative effect against APAP-induced oxidative damage in liver and kidney due to its free radical scavenging and antioxidant properties. The overall efficacy of the extract at 200 mg/kg dose is comparable with NAC.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Xavier Valentini ◽  
Pascaline Rugira ◽  
Annica Frau ◽  
Vanessa Tagliatti ◽  
Raphaël Conotte ◽  
...  

Titanium dioxide (TiO2) nanoparticles (NPs) are produced abundantly and are frequently used as a white pigment in the manufacture of paints, foods, paper, and toothpaste. Despite the wide ranges of uses, there is a lack of information on the impact of NPs on animal and human health. In the present study, rats were exposed to different doses of TiO2 nanoparticles and sacrificed, respectively, 4 days, 1 month, and 2 months after treatment. Dosage of TiO2 in tissues was performed by ICP-AES and revealed an important accumulation of TiO2 in the liver. The nanoparticles induced morphological and physiological alterations in liver and kidney. In the liver, these alterations mainly affect the hepatocytes located around the centrilobular veins. These cells were the site of an oxidative stress evidenced by immunocytochemical detection of 4-hydroxynonenal (4-HNE). Kupffer cells are also the site of an important oxidative stress following the massive internalization of TiO2 nanoparticles. Enzymatic markers of liver and kidney functions (such as AST and uric acid) are also disrupted only in animals exposed to highest doses. The metabonomic approach allowed us to detect modifications in urine samples already detectable after 4 days in animals treated at the lowest dose. This metabonomic pattern testifies an oxidative stress as well as renal and hepatic alterations.


Sign in / Sign up

Export Citation Format

Share Document