scholarly journals Plasma & Microwaves as Greener Options for Nanodiamond Purification: Insight Into Cytocompatibility

Author(s):  
Dimitar P. Mitev ◽  
Amir M. Alsharabasy ◽  
Liam Morrison ◽  
Sebastian Wittig ◽  
Christof Diener ◽  
...  

The potential biomedical applications of nanodiamond have been considered over the last few decades. However, there is still uncertainty regarding the extent to which the surface characteristics of this material can influence potential applications. The present study investigated the effects of surface characteristics alongside the prospective of improving nanodiamond production using cold plasma and microwave technologies for the surface tailoring of the nanocarbons. Numerous approaches were applied to purify, refine and modify a group of nanosized diamonds at each step of their production cycle: from the detonation soot as the initial raw material to already certified samples. The degree of surface changes were deliberately performed slowly and kept at different non-diamond carbon presence stages, non-carbon elemental content, and amount converted superficial moieties. In total, 21 treatment procedures and 35 types of nanosize diamond products were investigated. In addition cultures of human fibroblast cells showed enhanced viability in the presence of many of the processed nanodiamonds, indicating the potential for dermal applications of these remarkable nanomaterials.

2015 ◽  
Vol 22 (15) ◽  
pp. 1808-1828 ◽  
Author(s):  
Diana Couto ◽  
Marisa Freitas ◽  
Felix Carvalho ◽  
Eduarda Fernandes

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 906
Author(s):  
Le Minh Tu Phan ◽  
Thuy Anh Thu Vo ◽  
Thi Xoan Hoang ◽  
Sungbo Cho

Recently, photothermal therapy (PTT) has emerged as one of the most promising biomedical strategies for different areas in the biomedical field owing to its superior advantages, such as being noninvasive, target-specific and having fewer side effects. Graphene-based hydrogels (GGels), which have excellent mechanical and optical properties, high light-to-heat conversion efficiency and good biocompatibility, have been intensively exploited as potential photothermal conversion materials. This comprehensive review summarizes the current development of graphene-integrated hydrogel composites and their application in photothermal biomedicine. The latest advances in the synthesis strategies, unique properties and potential applications of photothermal-responsive GGel nanocomposites in biomedical fields are introduced in detail. This review aims to provide a better understanding of the current progress in GGel material fabrication, photothermal properties and potential PTT-based biomedical applications, thereby aiding in more research efforts to facilitate the further advancement of photothermal biomedicine.


2017 ◽  
Vol 907 ◽  
pp. 104-118
Author(s):  
Maria Stoicănescu ◽  
Eliza Buzamet ◽  
Dragos Vladimir Budei ◽  
Valentin Craciun ◽  
Roxana Budei ◽  
...  

Dental implants are becoming increasingly used in current dental practice. This increased demand has motivated manufacturers to develop varieties of product through design, but also looking for new materials used to improve surface characteristics in order to obtain a better osseointegration. But the increase in the use of implants goes to a consequent increase in the number of failures. These failures are caused either by treatment complications (peri-implantitis), by fatigue breakage under mechanical over-stress, by defective raw material, or due to errors during the insertion procedures. Although they are rare, these complications are serious in dentistry. Before to market a dental implant to clinical practitioners, the product is validated among other determinations in number of biocompatibility research. Raw material issues, details about its structure and properties are less published by the scientific literature, but all this are subject of a carefully analysis of the producers. Breaking of dental implants during surgical procedures, during the prosthetic procedures or during use (chewing, bruxism, accidents, etc.), is the second most common cause of loss of an implant after consecutive peri-implantitis rejection. Although the frequency of this type of failure for a dental implant is much smaller than those caused by the peri-implantitis, a detailed study of broken implants can explain possible causes. The use of scanning electron microscopy (SEM) in the study of the cleave areas explain the production mechanism of cleavages, starting from micro-fissures in the alloy used for the production of dental implants. These micro-fissures in weak areas of the implant (anti-rotational corners of the polygons, etc.) could generate a serious risk of cleavage first time when a higher force is applied.


2015 ◽  
Vol 244 ◽  
pp. 121-129
Author(s):  
Marian Peciar ◽  
Roman Fekete ◽  
Peter Peciar

This article deals with the presentation of modern applications for processing powdered, primarily hazardous, waste to an agglomeration form appropriate for subsequent processing by classical methods, for example in the construction, automotive and consumer goods industries. The aim of the research work was to set appropriate operating conditions in order to appreciate currently non-processable wastes resulting from the intensive production of often extremely expensive materials. Technologies which enable returning powder waste back into the primary production cycle were developed and experimentally tested, thus saving raw material resources. When necessary for the fixing of fine airborne particles with a problematic compacting curve (hard to compress, repulsive due to the surface charge) extrusion processes using a patented technology enabling controlled modification of shear forces in the extrusion zone were successfully applied. A new type of axial extruder allows the elimination of the liquid phase and as a result prevents the clogging of the extrusion chamber. In the case of need for granulation of sensitive materials (for example pharmaceuticals not allowing the addition of any kind of agglomerating fluid or reacting strongly in the contact of the two phases), a process of compaction between rolls with different profiled surface was successfully applied. The developed high technologies and the resulting products thus represent a major contribution to environmental protection in the context of not only the work but also the communal environment.


2013 ◽  
Vol 67 (3) ◽  
pp. 514-520
Author(s):  
A. R. Navarro ◽  
Z. Lopez ◽  
J. Salguero ◽  
M. C. Maldonado

Lemon growing areas in the north of Argentina have industries that produce concentrated juice, peel and essential oil and generate a significant amount of liquid and solid waste as lemon pulp. In Argentina, despite the potential applications that the pulp has as animal feed and human and industrial raw material, only 10% is used for these purposes and the rest is discarded into the environment causing many ecological and economic problems. There is little information in the literature on biotechnologies for the treatment of this industrial waste. This paper shows that lemon pulp is a suitable substrate to be treated by anaerobic digestion. We obtained 86 and 92% reduction of chemical oxygen demand in a digester with a semi-continuous feed and retention time of 10 and 20 days respectively and a productivity of 0.406 g CH4/g VS h. Comparative tests showed that pre-digesting the pulp improved the process of digestion and increased biogas generation by 20%.


2018 ◽  
Vol 15 (2) ◽  
pp. 286-313 ◽  
Author(s):  
Manash P. Borgohain ◽  
Krishna Kumar Haridhasapavalan ◽  
Chandrima Dey ◽  
Poulomi Adhikari ◽  
Rajkumar P. Thummer

2019 ◽  
Vol 17 (2) ◽  
pp. 87-99
Author(s):  
Gerd Brantes Angelkorte

The concern with global warming impacts on the environment has made the world population search for new energy sources that are less aggressive to the environment. Therefore, biodiesel has become more relevant and has expanded its proportion in the blend with diesel. However, Brazil still uses about 20% of bovine tallow, which emits large amount of GHG, degrades the soil and entails great water consumption. The purpose of this study was to evaluate the possibilities and effects of the substitution of this nonrenewable source for others of vegetable origin, as well as the environmental effects of increasing the percentage of biodiesel, reaching levels of 20% and 30%. Hence, two types of biodiesel were produced and tested, with and without bovine tallow, and the results obtained and data from the diesel fleet were used to model the impacts and CO2eq emissions with the aid of the MoMo Lite model in Brazil. It was possible to determine the great benefit of adopting higher levels of biodiesel in diesel (especially when there was a substitution of bovine tallow for plant sources), besides the importance of adopting broader analysis of the whole production cycle of the raw material. Since only CO2eq emission data were observed at the burning, the results varied only 10%, but when the results were analyzed through the well-to-tank, this variation rose to 52%.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lizhen Zhang ◽  
Chengyuan Zhu ◽  
Rongtao Huang ◽  
Yanwen Ding ◽  
Changping Ruan ◽  
...  

Recently, inorganic nanomaterials have received considerable attention for use in biomedical applications owing to their unique physicochemical properties based on their shapes, sizes, and surface characteristics. Photodynamic therapy (PDT), sonodynamic therapy (SDT), and chemical dynamic therapy (CDT), which are cancer therapeutics mediated by reactive oxygen species (ROS), have the potential to significantly enhance the therapeutic precision and efficacy for cancer. To facilitate cancer therapeutics, numerous inorganic nanomaterials have been developed to generate ROS. This mini review provides an overview of the generation mechanisms of ROS by representative inorganic nanomaterials for cancer therapeutics, including the structures of engineered inorganic nanomaterials, ROS production conditions, ROS types, and the applications of the inorganic nanomaterials in cancer PDT, SDT, and CDT.


2020 ◽  
Vol 14 (2) ◽  
Author(s):  
N. Pritulska ◽  
I. Motuzka ◽  
A. Koshelnyk ◽  
M. Jarossová ◽  
A. Lacková

A recent tendency in Ukraine is the changes in the structure of food consumption, which are caused by the reduced consumption of some product groups and by their decreasing quality. A persisting problem is that affordable and easy-to-consume food products made with due consideration of the needs of patients with certain categories of diseases can hardly be found on the domestic market. The products present on the domestic market are all imported, available in a limited assortment, very expensive, and not customised to suit all the specific needs of human metabolism. Approaches to the nutrition of patients with certain types of nutrition-dependent and non-infectious diseases have been analysed. It has been established that аn effective component in the diet of patients with non-infectious diseases can be plant-based milk analogues. It has been determined how important it is to use domestic raw materials: it will contribute to expanding domestic production, will help the gross domestic product growth, and will reduce the product’s costs, thus reducing the costs of diagnostic and treatment procedures. It has been established that the assortment of plant-based milk analogues is constantly expanding. The vegetable raw material conventionally used to make this product group has been analysed. It has been shown that fenugreek seeds can be most effectively used to make special food products (in particular, plant-based milk analogues) for the nutritional support of patients with non-infectious diseases. This is feasible due to the availability of the raw material, simple cultivating conditions, the chemical composition of the product (e. g. a wide range of biologically active substances), low costs of the product when it is made from domestic raw materials, and the simple production technology. It is expected that manufacture of milk analogues from fenugreek seeds will widen the assortment of this product group, and satisfy the target consumers’ needs of safe and high quality products that offer an alternative to imports.


Author(s):  
Norman Herz ◽  
Ervan G. Garrison

Archaeological ceramics refers to products made primarily of clay and containing variable amounts of lithic and other materials as well. The term ceramic is derived from the Greek keramos, which has been translated as "earthenware" or "burned stuff." Ceramics include products that have been fired, primarily pottery but also brick, tile, glass, plaster, and cement as well. Since pottery is by far the most important archaeologically, and the methods of sampling and study are largely applicable to the others, this chapter is devoted primarily to pottery. Pottery then is the general term used here for artifacts made entirely or largely of clay and hardened by heat. Today, a distinction is sometimes made between pottery, applied to lower-quality ceramic wares, and the higher-grade product porcelain. No such distinction will be made here, so the term pottery alone will be used. Raw material that goes into the making of a pot includes primarily clay, but also varying amounts of temper, which is added to make the material more manageable and to help preserve the worked shape of the pot during firing. Of primary interest in ceramic studies are 1. the nature and the source of the raw materials—clays, temper, and slip (applied surface pigment)—and a reconstruction of the working methods of ancient potters; 2. the physical properties of the raw materials, from their preparation as a clay-temper body through their transformations during manufacture into a final ceramic product; 3. the nature of the chemical and mineral reactions that take place during firing as a clue to the technology available to the potter; and 4. the uses, provenance, and trade of the wares produced. Much of the information needed to answer these questions is available through standard geochemical and petrographic analysis of ceramic artifacts. Insight into the working methods of ancient potters also has been obtained through ethnographic studies of cultures where, because of isolation or conservative traditions or both, ancient methods have been preserved.


Sign in / Sign up

Export Citation Format

Share Document