scholarly journals Emerging Role of LncRNA Regulation for NLRP3 Inflammasome in Diabetes Complications

Author(s):  
Xiaolin Lu ◽  
Qihong Tan ◽  
Jianyong Ma ◽  
Jing Zhang ◽  
Peng Yu

Diabetes is a widespread metabolic disease with various complications, including diabetic nephropathy, retinopathy, cardiomyopathy, and other cardiovascular or cerebrovascular diseases. As the prevalence of diabetes increases in all age groups worldwide, diabetes and its complications cause an emerging public health burden. NLRP3 inflammasome is a complex of several proteins that play a critical role in inflammatory response and various diseases, including diabetes and its complications. Accumulating evidences indicate that NLRP3 inflammasome contributes to the development of diabetes and diabetic complications and that NLRP3 inflammation inactivation is beneficial in treating these illnesses. Emerging evidences suggest the critical role of long non-coding RNAs (lncRNAs) in regulating NLRP3 inflammasome activity in various diseases. LncRNAs are non-coding RNAs exceeding 200 nucleotides in length. Its dysregulation has been linked to the development of diseases, including diabetes. Recently, growing evidences hint that regulating lncRNAs on NLRP3 inflammasome is critical in developing and progressing diabetes and diabetic complications. Here, we discuss the role of lncRNAs in regulating NLRP3 inflammasome as well as its participation in diabetes and diabetic complications, providing novel insights into developing future therapeutic approaches for diabetes.

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 933
Author(s):  
Andrea Gila-Diaz ◽  
Gloria Herranz Carrillo ◽  
Pratibha Singh ◽  
David Ramiro-Cortijo

Cardiovascular disease remains a leading cause of mortality worldwide. Unresolved inflammation plays a critical role in cardiovascular diseases development. Specialized Pro-Resolving Mediators (SPMs), derived from long chain polyunsaturated fatty acids (LCPUFAs), enhances the host defense, by resolving the inflammation and tissue repair. In addition, SPMs also have anti-inflammatory properties. These physiological effects depend on the availability of LCPUFAs precursors and cellular metabolic balance. Most of the studies have focused on the impact of SPMs in adult cardiovascular health and diseases. In this review, we discuss LCPUFAs metabolism, SPMs, and their potential effect on cardiovascular health and diseases primarily focusing in neonates. A better understanding of the role of these SPMs in cardiovascular health and diseases in neonates could lead to the development of novel therapeutic approaches in cardiovascular dysfunction.


2019 ◽  
Vol 122 (1) ◽  
pp. 1-3 ◽  
Author(s):  
Adrian L. Harris

AbstractCancer metabolism has undergone a resurgence in the last decade, 70 years after Warburg described aerobic glycolysis as a feature of cancer cells. A wide range of techniques have elucidated the complexity and heterogeneity in preclinical models and clinical studies. What emerges are the large differences between tissues, tumour types and intratumour heterogeneity. However, synergies with inhibition of metabolic pathways have been found for many drugs and therapeutic approaches, and a critical role of window studies and translational trial design is key to success.


2021 ◽  
Vol 22 (16) ◽  
pp. 8927
Author(s):  
Caitlin Hounsell ◽  
Yun Fan

Caspases, a family of cysteine-aspartic proteases, have an established role as critical components in the activation and initiation of apoptosis. Alongside this a variety of non-apoptotic caspase functions in proliferation, differentiation, cellular plasticity and cell migration have been reported. The activity level and context are important factors in determining caspase function. As a consequence of their critical role in apoptosis and beyond, caspases are uniquely situated to have pathological roles, including in cancer. Altered caspase function is a common trait in a variety of cancers, with apoptotic evasion defined as a “hallmark of cancer”. However, the role that caspases play in cancer is much more complex, acting both to prevent and to promote tumourigenesis. This review focuses on the major findings in Drosophila on the dual role of caspases in tumourigenesis. This has major implications for cancer treatments, including chemotherapy and radiotherapy, with the activation of apoptosis being the end goal. However, such treatments may inadvertently have adverse effects on promoting tumour progression and acerbating the cancer. A comprehensive understanding of the dual role of caspases will aid in the development of successful cancer therapeutic approaches.


2019 ◽  
Vol 244 (2) ◽  
pp. 73-82 ◽  
Author(s):  
Xue Gong ◽  
Gengze Wu ◽  
Chunyu Zeng

Over the last several decades, cardiovascular diseases largely increase the morbidity and mortality especially in developed countries, affecting millions of people worldwide. Although extensive work over the last two decades attempted to decipher the molecular network of regulating the pathogenesis and progression of these diseases, evidences from clinical trials with newly revealed targets failed to show more evidently salutary effects, indicating the inefficiency of understanding the complete regulatory landscape. Recent studies have shifted their focus from coding genes to the non-coding ones, which consist of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and the lately re-discovered a unique group of RNAs—circular RNAs (circRNAs). As the focus now has been shifted to the newly identified group of non-coding RNAs, circRNAs exhibit stability, highly conservation and relative enriched expression abundance in some cases, which are distinct from their cognate linear counterparts—lncRNAs. So far, emerging evidence begins to support the critical role of circRNAs in organogenesis and pathogenesis as exemplified in the central nervous system, and could be just as implicative in the cardiovascular system, suggesting a therapeutic perspective in related diseases. Impact statement Circular RNAs are important regulators of multiple biological processes such as organogenesis and oncogenesis. Although the bulk of concerning studies focused on revealing their diversified roles in various types of cancers, reports began to accumulate in cardiovascular field these days. We summarize circular RNAs implicated in cardiovascular diseases, aiming to highlight the advances in the knowledge of such diseases and their potential of being promising target for diagnosis and therapy.


2009 ◽  
Vol 297 (5) ◽  
pp. F1137-F1152 ◽  
Author(s):  
Nader G. Abraham ◽  
Jian Cao ◽  
David Sacerdoti ◽  
Xiaoying Li ◽  
George Drummond

Heme oxygenase (HO) plays a critical role in attenuating the production of reactive oxygen species through its ability to degrade heme in an enzymatic process that leads to the production of equimolar amounts of carbon monoxide and biliverdin/bilirubin and the release of free iron. The present review examines the beneficial role of HO-1 (inducible form of HO) that is achieved by increased expression of this enzyme in renal tissue. The influence of the HO system on renal physiology, obesity, vascular dysfunction, and blood pressure regulation is reviewed, and the clinical potential of increased levels of HO-1 protein, HO activity, and HO-derived end products of heme degradation is discussed relative to renal disease. The use of pharmacological and genetic approaches to investigate the role of the HO system in the kidney is key to the development of therapeutic approaches to prevent the adverse effects that accrue due to an impairment in renal function.


2012 ◽  
Vol 17 (3) ◽  
pp. 28-34
Author(s):  
V. P. Chulanov ◽  
N. N. Pimenov ◽  
I. V. Karandashova ◽  
S. V. Komarova

The article describes results of the analysis of incidence rate of hepatitis A in Russia and 29 European countries over the period 2001 to 2008. The characteristic of hepatitis A outbreaks as well as molecular genetic diversity of hepatitis A virus in Russia and Europe has been compared. The authors analyze the state of herd immunity to hepatitis A virus in population of the territories of countries mentioned above. The results of seroprevalence study of hepatitis A virus among different age groups in Moscow are presented. The critical role of hepatitis A vaccination in the system of prevention and disease control measures is emphasized.


2021 ◽  
Vol 12 ◽  
Author(s):  
Panpan Chang ◽  
Hao Li ◽  
Hui Hu ◽  
Yongqing Li ◽  
Tianbing Wang

Autophagy fights against harmful stimuli and degrades cytosolic macromolecules, organelles, and intracellular pathogens. Autophagy dysfunction is associated with many diseases, including infectious and inflammatory diseases. Recent studies have identified the critical role of the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasomes activation in the innate immune system, which mediates the secretion of proinflammatory cytokines IL-1β/IL-18 and cleaves Gasdermin D to induce pyroptosis in response to pathogenic and sterile stimuli. Accumulating evidence has highlighted the crosstalk between autophagy and NLRP3 inflammasome in multifaceted ways to influence host defense and inflammation. However, the underlying mechanisms require further clarification. Histone deacetylase 6 (HDAC6) is a class IIb deacetylase among the 18 mammalian HDACs, which mainly localizes in the cytoplasm. It is involved in two functional deacetylase domains and a ubiquitin-binding zinc finger domain (ZnF-BUZ). Due to its unique structure, HDAC6 regulates various physiological processes, including autophagy and NLRP3 inflammasome, and may play a role in the crosstalk between them. In this review, we provide insight into the mechanisms by which HDAC6 regulates autophagy and NLRP3 inflammasome and we explored the possibility and challenges of HDAC6 in the crosstalk between autophagy and NLRP3 inflammasome. Finally, we discuss HDAC6 inhibitors as a potential therapeutic approach targeting either autophagy or NLRP3 inflammasome as an anti-inflammatory strategy, although further clarification is required regarding their crosstalk.


2020 ◽  
Vol 21 (23) ◽  
pp. 9165
Author(s):  
Marina Chulkina ◽  
Ellen J. Beswick ◽  
Irina V. Pinchuk

The gastrointestinal (GI) mucosa is among the most complex systems in the body. It has a diverse commensal microbiome challenged continuously by food and microbial components while delivering essential nutrients and defending against pathogens. For these reasons, regulatory cells and receptors are likely to play a central role in maintaining the gut mucosal homeostasis. Recent lessons from cancer immunotherapy point out the critical role of the B7 negative co-stimulator PD-L1 in mucosal homeostasis. In this review, we summarize the current knowledge supporting the critical role of PD-L1 in gastrointestinal mucosal tolerance and how abnormalities in its expression and signaling contribute to gut inflammation and cancers. Abnormal expression of PD-L1 and/or the PD-1/PD-L1 signaling pathways have been observed in the pathology of the GI tract. We also discuss the current gap in our knowledge with regards to PD-L1 signaling in the GI tract under homeostasis and pathology. Finally, we summarize the current understanding of how this pathway is currently targeted to develop novel therapeutic approaches.


2019 ◽  
Vol 133 ◽  
pp. S345
Author(s):  
S. Niclou ◽  
S. Fritah ◽  
M. Sarmini ◽  
W. Jiang ◽  
A. Muller ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 319
Author(s):  
Saquib Waheed ◽  
Lihui Zeng

Flowering is an important biological process for plants that ensures reproductive success. The onset of flowering needs to be coordinated with an appropriate time of year, which requires tight control of gene expression acting in concert to form a regulatory network. MicroRNAs (miRNAs) are non-coding RNAs known as master modulators of gene expression at the post-transcriptional level. Many different miRNA families are involved in flowering-related processes such as the induction of floral competence, floral patterning, and the development of floral organs. This review highlights the diverse roles of miRNAs in controlling the flowering process and flower development, in combination with potential biotechnological applications for miRNAs implicated in flower regulation.


Sign in / Sign up

Export Citation Format

Share Document