scholarly journals Iterative Forecasting Improves Near-Term Predictions of Methane Ebullition Rates

2021 ◽  
Vol 9 ◽  
Author(s):  
Ryan P. McClure ◽  
R. Quinn Thomas ◽  
Mary E. Lofton ◽  
Whitney M. Woelmer ◽  
Cayelan C. Carey

Near-term, ecological forecasting with iterative model refitting and uncertainty partitioning has great promise for improving our understanding of ecological processes and the predictive skill of ecological models, but to date has been infrequently applied to predict biogeochemical fluxes. Bubble fluxes of methane (CH4) from aquatic sediments to the atmosphere (ebullition) dominate freshwater greenhouse gas emissions, but it remains unknown how best to make robust near-term CH4 ebullition predictions using models. Near-term forecasting workflows have the potential to address several current challenges in predicting CH4 ebullition rates, including: development of models that can be applied across time horizons and ecosystems, identification of the timescales for which predictions can provide useful information, and quantification of uncertainty in predictions. To assess the capacity of near-term, iterative forecasting workflows to improve ebullition rate predictions, we developed and tested a near-term, iterative forecasting workflow of CH4 ebullition rates in a small eutrophic reservoir throughout one open-water period. The workflow included the repeated updating of a CH4 ebullition forecast model over time with newly-collected data via iterative model refitting. We compared the CH4 forecasts from our workflow to both alternative forecasts generated without iterative model refitting and a persistence null model. Our forecasts with iterative model refitting estimated CH4 ebullition rates up to 2 weeks into the future [RMSE at 1-week ahead = 0.53 and 0.48 loge(mg CH4 m−2 d−1) at 2-week ahead horizons]. Forecasts with iterative model refitting outperformed forecasts without refitting and the persistence null model at both 1- and 2-week forecast horizons. Driver uncertainty and model process uncertainty contributed the most to total forecast uncertainty, suggesting that future workflow improvements should focus on improved mechanistic understanding of CH4 models and drivers. Altogether, our study suggests that iterative forecasting improves week-to-week CH4 ebullition predictions, provides insight into predictability of ebullition rates into the future, and identifies which sources of uncertainty are the most important contributors to the total uncertainty in CH4 ebullition predictions.

2021 ◽  
pp. 1
Author(s):  
Rachel Kim ◽  
Bruno Tremblay ◽  
Charles Brunette ◽  
Robert Newton

AbstractThinning sea ice cover in the Arctic is associated with larger interannual variability in the minimum Sea Ice Extent (SIE). The current generation of forced or fully coupled models, however, have difficulty predicting SIE anomalies from the long-term trend, highlighting the need to better identify the mechanisms involved in the seasonal evolution of sea ice cover. One such mechanism is Coastal Divergence (CD), a proxy for ice thickness anomalies based on late winter ice motion, quantified using Lagrangian ice tracking. CD gains predictive skill through the positive feedback of surface albedo anomalies, mirrored in Reflected Solar Radiation (RSR), during melt season. Exploring the dynamic and thermodynamic contributions to minimum SIE predictability, RSR, initial SIE (iSIE) and CD are compared as predictors using a regional seasonal sea ice forecast model for July 1, June 1 and May 1 forecast dates for all Arctic peripheral seas. The predictive skill of June RSR anomalies mainly originates from open water fraction at the surface, i.e. June iSIE and June RSR have equal predictive skill for most seas. The finding is supported by the surprising positive correlation found between June Melt Pond Fraction (MPF) and June RSR in all peripheral seas: MPF anomalies indicate presence of ice or open water that is key to creating minimum SIE anomalies. This contradicts models that show correlation between melt onset, MPF and the minimum SIE. A hindcast model shows that for a May 1 forecast, CD anomalies have better predictive skill than RSR anomalies for most peripheral seas.


Author(s):  
Ahmed Fadel Jassim Dawood

The Arab region is of great importance as an important part of the Middle East for both international and regional powers.This importance has placed it and its peoples in the suffering of international and regional interventions and has placed it in a state of permanent instability as it witnessed international and regional competition that increased significantly after the US intervention in Iraq in 2003. Accordingly, the research aims to shed light on the strategic directions of the global and regional powers by knowing their objectives separately, such as American, Russian, Turkish, Israeli and Iranian. The course aims at determining the future of this region in terms of political stability and lack thereof. Therefore, the hypothesis of the research comes from [that the different strategic visions and political and economic interests between the international and regional powers have exacerbated the conflicts between those forces and their alliances within the Arab region.. The third deals with the future of the Arab region in light of the conflict of these strategies. Accordingly, the research reached a number of conclusions confirming the continuation of international and regional competition within the Arab region, as well as the continuation of the state of conflict, tension, instability and chaos in the near term, as a result of the inability of Arab countries to overcome their political differences on the one hand and also their inability to advance their Arab reality. In the face of external challenges on the other.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Muhammad Javed Iqbal ◽  
Zeeshan Javed ◽  
Haleema Sadia ◽  
Ijaz A. Qureshi ◽  
Asma Irshad ◽  
...  

AbstractArtificial intelligence (AI) is the use of mathematical algorithms to mimic human cognitive abilities and to address difficult healthcare challenges including complex biological abnormalities like cancer. The exponential growth of AI in the last decade is evidenced to be the potential platform for optimal decision-making by super-intelligence, where the human mind is limited to process huge data in a narrow time range. Cancer is a complex and multifaced disorder with thousands of genetic and epigenetic variations. AI-based algorithms hold great promise to pave the way to identify these genetic mutations and aberrant protein interactions at a very early stage. Modern biomedical research is also focused to bring AI technology to the clinics safely and ethically. AI-based assistance to pathologists and physicians could be the great leap forward towards prediction for disease risk, diagnosis, prognosis, and treatments. Clinical applications of AI and Machine Learning (ML) in cancer diagnosis and treatment are the future of medical guidance towards faster mapping of a new treatment for every individual. By using AI base system approach, researchers can collaborate in real-time and share knowledge digitally to potentially heal millions. In this review, we focused to present game-changing technology of the future in clinics, by connecting biology with Artificial Intelligence and explain how AI-based assistance help oncologist for precise treatment.


2018 ◽  
Author(s):  
Steven Turnock ◽  
Oliver Wild ◽  
Frank Dentener ◽  
Yanko Davila ◽  
Louisa Emmons ◽  
...  

Abstract. This study quantifies future changes in tropospheric ozone (O3) using a simple parameterisation of source-receptor relationships based on simulations from a range of models participating in the Task Force on Hemispheric Transport of Air Pollutants (TF-HTAP) experiments. Surface and tropospheric O3 changes are calculated globally and across 16 regions from perturbations in precursor emissions (NOx, CO, VOCs) and methane (CH4) abundance. A source attribution is provided for each source region along with an estimate of uncertainty based on the spread of the results from the models. Tests against model simulations using HadGEM2-ES confirm that the approaches used within the parameterisation are valid. The O3 response to changes in CH4 abundance is slightly larger in TF-HTAP Phase 2 than in the TF-HTAP Phase 1 assessment (2010) and provides further evidence that controlling CH4 is important for limiting future O3 concentrations. Different treatments of chemistry and meteorology in models remains one of the largest uncertainties in calculating the O3 response to perturbations in CH4 abundance and precursor emissions, particularly over the Middle East and South Asian regions. Emission changes for the future ECLIPSE scenarios and a subset of preliminary Shared Socio-economic Pathways (SSPs) indicate that surface O3 concentrations will increase by 1 to 8 ppbv in 2050 across different regions. Source attribution analysis highlights the growing importance of CH4 in the future under current legislation. A global tropospheric O3 radiative forcing of +0.07 W m−2 from 2010 to 2050 is predicted using the ECLIPSE scenarios and SSPs, based solely on changes in CH4 abundance and tropospheric O3 precursor emissions and neglecting any influence of climate change. Current legislation is shown to be inadequate in limiting the future degradation of surface ozone air quality and enhancement of near-term climate warming. More stringent future emission controls provide a large reduction in both surface O3 concentrations and O3 radiative forcing. The parameterisation provides a simple tool to highlight the different impacts and associated uncertainties of local and hemispheric emission control strategies on both surface air quality and the near-term climate forcing by tropospheric O3.


Author(s):  
Tara Laughlin

Current systems of education, both K12 and postsecondary, are leaving learners unprepared for the future of work. Standardized, compliance-oriented approaches to teaching and learning are inequitable and are not responsive enough to meet individual learner needs. A learner-centered educational paradigm has emerged which seeks to disrupt traditional models of education by centering the individual needs of learners in all learning experiences. At the same time, the alternative educational model of micro-credentialing holds great promise to improve workforce readiness. While the fields of learner-centered education and micro-credentials are simultaneously gaining traction, their possible intersections have yet to be fully explored. Micro-credentials have the potential to ready learners for the future of work while providing a deeply relevant, learner-centered experience. This chapter lays out a vision for exactly what this might look like and why it matters for learners.


2020 ◽  
pp. 228-244
Author(s):  
Kyle M. Lascurettes

Chapter 9 (“The Future of Order”) reviews the empirical findings of the book and discusses their implications for the study of international relations. It then leverages these findings to address the two most important questions for international order in the twenty-first century: In the near term, what changes to the existing liberal order will the United States advocate as it continues to decline in relative power? And in the long term, what is its projected hegemonic successor, China, likely to do with the existing order when it finds itself in a position to fundamentally recast its underlying principles?


2010 ◽  
Vol 113-116 ◽  
pp. 59-63 ◽  
Author(s):  
Yun Zhang ◽  
Yuan Biao Zhang ◽  
Ying Feng ◽  
Xiao Jin Yang

Based on the related current researches, this disquisition is focused on the problem of plastic debris in the Great Pacific Ocean Garbage Patch. From three aspects-the extent, density and distribution, this disquisition made a research on the current situation of the serious problem, and then put forward a quantitative model of the weight of plastic debris in the Pacifi Ocean Gyre. Besides, by limiting polystyrene takeout containers, we established an iterative model to predict the weight of plastic debris access to the sea per year in the future. After proving limiting polystyrene takeout containers could reduce the plastic debris effectively, we carry on a detailed analysis.


2005 ◽  
Vol 39 (7) ◽  
pp. 542-549 ◽  
Author(s):  
Ian P. Blair ◽  
Philip B. Mitchell ◽  
Peter R. Schofield

Objective: Most psychiatric disorders are complex genetic traits involving both genetic and environmental risk factors. This paper aims to review the gene identification strategies being applied bymolecular geneticists in their efforts to elucidate the genetic and molecular basis of psychiatric disorders. Future strategies will also be canvassed. Method: The psychiatric genetic literature was reviewed to identify current strategies applied to gene identification, with examples provided where available. The future strategies and applications that will arise from genome projects, including the International Haplotype Mapping Project, are also discussed. Results: Many advances in the techniques of gene discovery, and the increasing resources available, are rapidly being adopted by researchers and applied to the complex problem of identifying susceptibility genes for mental illnesses. Perhaps the single most important advance to date is the Human Genome Project and all that has stemmed from the vast quantity of information that this endeavour has provided. With these technological advances and the massive increase of publicly available genetic resources, several genes have recently been implicated in the susceptibility to psychiatric illnesses including schizophrenia and depression. After many years of fruitless endeavours, these recent reports indicate that the labours of researchers in psychiatric genetics are beginning to show exciting results. Conclusions: Identification of these susceptibility genes holds great promise, with the unravelling of the molecular and biochemical basis of some conditions now being a more realistic and tangible goal. The increasing number of genes being identified augers well for the future treatment of psychiatric disorders. The genes identified, and the pathways of genes and proteins that they implicate, will provide potential novel targets for new therapeutic drugs. Psychiatric genetics appears to be poised for significant advances in our knowledge and understanding of the molecular genetic basis of mental illness.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 634 ◽  
Author(s):  
Do Nam ◽  
Tran Hoa ◽  
Phan Duong ◽  
Duong Thuan ◽  
Dang Mai

Exploring potential floods is both essential and critical to making informed decisions for adaptation options at a river basin scale. The present study investigates changes in flood extremes in the future using downscaled CMIP5 (Coupled Model Intercomparison Project—Phase 5) high-resolution ensemble projections of near-term climate for the Upper Thu Bon catchment in Vietnam. Model bias correction techniques are utilized to improve the daily rainfall simulated by the multi-model climate experiments. The corrected rainfall is then used to drive a calibrated supper-tank model for runoff simulations. The flood extremes are analyzed based on the Gumbel extreme value distribution and simulation of design hydrograph methods. Results show that the former method indicates almost no changes in the flood extremes in the future compared to the baseline climate. However, the later method explores increases (approximately 20%) in the peaks of very extreme events in the future climate, especially, the flood peak of a 50-year return period tends to exceed the flood peak of a 100-year return period of the baseline climate. Meanwhile, the peaks of shorter return period floods (e.g., 10-year) are projected with a very slight change. Model physical parameterization schemes and spatial resolution seem to cause larger uncertainties; while different model runs show less sensitivity to the future projections.


2020 ◽  
Vol 8 ◽  
Author(s):  
Hai-Ping Cheng ◽  
Erik Deumens ◽  
James K. Freericks ◽  
Chenglong Li ◽  
Beverly A. Sanders

Chemistry is considered as one of the more promising applications to science of near-term quantum computing. Recent work in transitioning classical algorithms to a quantum computer has led to great strides in improving quantum algorithms and illustrating their quantum advantage. Because of the limitations of near-term quantum computers, the most effective strategies split the work over classical and quantum computers. There is a proven set of methods in computational chemistry and materials physics that has used this same idea of splitting a complex physical system into parts that are treated at different levels of theory to obtain solutions for the complete physical system for which a brute force solution with a single method is not feasible. These methods are variously known as embedding, multi-scale, and fragment techniques and methods. We review these methods and then propose the embedding approach as a method for describing complex biochemical systems, with the parts not only treated with different levels of theory, but computed with hybrid classical and quantum algorithms. Such strategies are critical if one wants to expand the focus to biochemical molecules that contain active regions that cannot be properly explained with traditional algorithms on classical computers. While we do not solve this problem here, we provide an overview of where the field is going to enable such problems to be tackled in the future.


Sign in / Sign up

Export Citation Format

Share Document