scholarly journals Evolution of Intestinal Microbiota of Asphyxiated Neonates Within 1 Week and Its Relationship With Neural Development at 6 Months

2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaojiao Zhang ◽  
Lili Liu ◽  
Wei Bai ◽  
Ying Han ◽  
Xinlin Hou

Introduction: Asphyxia is an emergent condition in neonates that may influence the function of the nervous system. Research has shown that intestinal microbiota is very important for neurodevelopment. Studies regarding the association between gut microbiota and neurodevelopment outcome in asphyxiated newborns remain scarce.Objective: To study the microbial characteristics of asphyxiated neonates within 1 week of life and to investigate their relationship with neural development at 6 months.Methods: The feces produced on days 1, 3, and 5, and the clinical data of full-term neonates with asphyxia and without asphyxia, delivered from March 2019 to October 2020 at Peking University First Hospital, were collected. We used 16S ribosomal deoxyribonucleic acid amplicon sequencing to detect the intestinal microbiota of asphyxiated neonates and neonates in the control group. We followed up asphyxiated neonates for 6 months and used the Ages and Stages Questionnaires-3 (ASQ-3) to evaluate their development.Results: A total of 45 neonates were enrolled in the study group and 32 were enrolled in the control group. On day 1, the diversity and richness of the microflora of the study group were more than those of the control group. Non-metric multidimensional scaling analysis showed significant differences in the microbiota of the two groups on days 1, 3, and 5. At the phylum level, the main microflora of the two groups were not different. At the genus level, the study group had increased relative abundance of Clostridium_sensu_stricto_1, Lachnoclostridium, Fusicatenibacter, etc. on day 1. On day 3, the relative abundance of Clostridium_sensu_stricto_1, Fusicatenibacter, etc. was still greater than that of the control group, and the relative abundance of Staphylococcus was less than that of the control group. On day 5, the relative abundance of Clostridium_sensu_stricto_1 and Lachnoclostridium was still higher than that of the control group, and the relative abundance of Dubosiella in the study group was significantly increased. At the species level, on day 3, the relative abundance of Staphylococcus caprae in the study group was less than that in the control group. Linear discriminant analysis effect size showed that the microbiota of the study group mainly consisted of Lachnospiraceae and Clostridia on day 1 and Clostridia on day 3. In the control group, Staphylococcus was the dominant bacterium on day 3. Neonates in the study group were followed up for 6 months, and the communication score of ASQ-3 was negatively correlated with the relative abundance of Lachnospiraceae and Clostridia on day 1.Conclusion: The diversity and richness of the microbiota of asphyxiated neonates on the first day of life were significantly increased and mainly consisted of pathogenic flora. Lachnospiraceae and Clostridia found in neonates with asphyxia on day 1 of life may be related to neural development at 6 months.

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3425
Author(s):  
Li Gong ◽  
Gengsheng Xiao ◽  
Liwei Zheng ◽  
Xia Yan ◽  
Qien Qi ◽  
...  

This study aimed to evaluate the effects of tributyrin on growth performance, biochemical indices and intestinal microbiota of yellow-feathered broilers. 360 one-day-old chicks were randomly allocated to three treatments with six replicates of 20 chicks each, including a normal control group (NC), an antibiotic group (PC), and a tributyrin (250 mg/kg) group (TB) for 63 days. The results showed that compared with the control, the feed conversion ratio (FCR) in the TB group decreased during the d22 to d42 (p < 0.05) and overall, the final weight and FCR of broilers tended to increase and decrease, respectively. Moreover, the TB group showed the highest creatine concentrations at the entire period (p < 0.05). TB treatment increased the Bacteroidetes relative abundance and decreased Firmicutes. Principal coordinates analysis yielded clear clustering of the three groups. Linear discriminant analysis effect size analysis found seven differentially abundant taxa in the TB group, including several members of Bacteroidedetes. The relative abundance of Eisenbergiella, Phascolarctobacterium, Megasphaera and Intestinimonas increased in tributyrin-treated broilers. Spearman correlation analysis identified a correlation between Eisenbergiella abundance and overall feed efficiency. These results demonstrated that tributyrin could improve the growth performance by modulating blood biochemical indices and the cecal microflora composition of broilers.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 482
Author(s):  
Jae-Kwon Jo ◽  
Seung-Ho Seo ◽  
Seong-Eun Park ◽  
Hyun-Woo Kim ◽  
Eun-Ju Kim ◽  
...  

Obesity can be caused by microbes producing metabolites; it is thus important to determine the correlation between gut microbes and metabolites. This study aimed to identify gut microbiota-metabolomic signatures that change with a high-fat diet and understand the underlying mechanisms. To investigate the profiles of the gut microbiota and metabolites that changed after a 60% fat diet for 8 weeks, 16S rRNA gene amplicon sequencing and gas chromatography-mass spectrometry (GC-MS)-based metabolomic analyses were performed. Mice belonging to the HFD group showed a significant decrease in the relative abundance of Bacteroidetes but an increase in the relative abundance of Firmicutes compared to the control group. The relative abundance of Firmicutes, such as Lactococcus, Blautia, Lachnoclostridium, Oscillibacter, Ruminiclostridium, Harryflintia, Lactobacillus, Oscillospira, and Erysipelatoclostridium, was significantly higher in the HFD group than in the control group. The increased relative abundance of Firmicutes in the HFD group was positively correlated with fecal ribose, hypoxanthine, fructose, glycolic acid, ornithine, serum inositol, tyrosine, and glycine. Metabolic pathways affected by a high fat diet on serum were involved in aminoacyl-tRNA biosynthesis, glycine, serine and threonine metabolism, cysteine and methionine metabolism, glyoxylate and dicarboxylate metabolism, and phenylalanine, tyrosine, and trypto-phan biosynthesis. This study provides insight into the dysbiosis of gut microbiota and metabolites altered by HFD and may help to understand the mechanisms underlying obesity mediated by gut microbiota.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wenxia Wang ◽  
Songlin Huang ◽  
Liangliang Yang ◽  
Guogang Zhang

There are many and diverse intestinal microbiota, and they are closely related to various physiological functions of the body. They directly participate in the host's food digestion, nutrient absorption, energy metabolism, immune response, and many other physiological activities and are also related to the occurrence of many diseases. The intestinal microbiota are extremely important for maintaining normal physical health. In order to explore the composition and differences of the intestinal microbiota of whooper swans in different wintering areas, we collected fecal samples of whooper swans in Sanmenxia, Henan, and Rongcheng, Shandong, and we used the Illumina HiSeq platform to perform high-throughput sequencing of bacterial 16S rRNA genes. Comparison between Sanmenxia and Rongcheng showed no significant differences in ACE, Chao 1, Simpson, and Shannon indices (p &gt; 0.05). Beta diversity results showed significant differences in bacterial communities between two groups [analysis of similarity (ANOSIM): R = 0.80, p = 0.011]. Linear discriminant analysis effect size (LEfSe) analysis showed that at the phylum level, the relative abundance of Actinobacteria was significantly higher in Sanmenxia whooper swans than Rongcheng whooper swans. At the genus level, the amount of Psychrobacter and Carnobacterium in Sanmenxia was significantly higher in Rongcheng, while the relative abundance Catellicoccus and Lactobacillus was significantly higher in Rongcheng than in Sanmenxia. This study analyzed the composition, characteristics, and differences of the intestinal microbiota of the whooper swans in different wintering environments and provided theoretical support for further exploring the relationship between the intestinal microbiota of the whooper swans and the external environment. And it played an important role in the overwintering physiology and ecology, population management, and epidemic prevention and control of whooper swans.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chung-Ming Chen ◽  
Hsiu-Chu Chou ◽  
Yu-Chen S. H. Yang

Maternal antibiotic treatment (MAT) during prenatal and intrapartum periods alters the bacterial composition and diversity of the intestinal microbiota of the offspring. The effect of MAT during pregnancy on the intestinal microbiota and its relationship with intestinal development remain unknown. This study investigated the effects of MAT during pregnancy on intestinal microbiota, injury and inflammation, vascularization, cellular proliferation, and the intestinal barrier in neonatal mice. At timed intervals, we fed pregnant C57BL/6N mice sterile drinking water containing antibiotics (ampicillin, gentamicin, and vancomycin; all 1 mg/ml) from gestational day 15 to delivery. The control dams were fed sterile drinking water. Antibiotic administration was halted immediately after birth. On postnatal day 7, the intestinal microbiota was sampled from the lower gastrointestinal tract and the ileum was harvested for histology, Western blot, and cytokines analyses. MAT significantly reduced the relative abundance of Bacteroidetes and Firmicutes and significantly increased the relative abundance of Proteobacteria in the intestine compared with their abundances in the control group. MAT also significantly increased intestinal injury score and cytokine levels, reduced the number of intestinal goblet cells and proliferating cell nuclear antigen-positive cells, and reduced the expressions of vascular endothelial growth factor and tight junction proteins. Therefore, we proposed that maternal antibiotic exposure during pregnancy disrupts the intestinal microbiota and intestinal development in neonatal mice.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8923
Author(s):  
Yimeng Li ◽  
Minghui Shi ◽  
Tianxiang Zhang ◽  
Xin Hu ◽  
Baofeng Zhang ◽  
...  

Weaning is an important event for all mammals, including young forest musk deer. However, weaning stress may cause intestinal microbiota-related disorders. Therefore, high-throughput 16S rRNA gene sequencing was applied to study the dynamic changes in intestinal microbiota during pre-weaning (10 days before weaning) and post-weaning (10 days after weaning) in 15 young forest musk deer. We saw that intestinal microbiota diversity in the post-weaning period was significantly higher than that in the pre-weaning period. The most dominant bacterial phyla were similar in the two groups (Firmicutes, Bacteroidetes and Verrucomicrobia). Meanwhile, we applied Linear discriminant analysis effect size (LefSe) to identify the most differentially microbial taxa in the pre-weaning and post-weaning groups. In the post-weaning forest musk deer, the relative abundance of Actinobacteria, Spirochaetes, Ruminococcaceae_UCG-005, Treponema and Prevotella was higher than in the pre-weaning group. However, higher relative abundance of the phyla Bacteroidetes was found in the pre-weaning group compared with that in the post-weaning group. In summary, this research provides a theoretical foundation for the dynamics of young forest musk deer intestinal microbiota during the weaning transition, which may benefit in understanding the growth and health of forest musk deer.


2021 ◽  
Vol 8 ◽  
Author(s):  
Changhao Wang ◽  
Xiuhong Dou ◽  
Jian Li ◽  
Jie Wu ◽  
Yan Cheng ◽  
...  

Purpose: To investigate the composition and diversity of the microbiota on the ocular surface of patients with blepharitis in northwestern China via 16S rDNA amplicon sequencing.Methods: Thirty-seven patients with blepharitis divided into groups of anterior, posterior and mixed blepharitis and twenty healthy controls from northwestern China were enrolled in the study. Samples were collected from the eyelid margin and conjunctival sac of each participant. The V3–V4 region of bacterial 16S rDNA in each sample was amplified and sequenced on the Illumina HiSeq 2500 sequencing platform, and the differences in taxonomy and diversity among different groups were compared.Results: The composition of the ocular surface microbiota of patients with blepharitis was similar to that of healthy subjects, but there were differences in the relative abundance of each bacterium. At the phylum level, the abundances of Actinobacteria, Cyanobacteria, Verrucomicrobia, Acidobacteria, Chloroflexi, and Atribacteria were significantly higher in the blepharitis group than in the healthy control group, while the relative abundance of Firmicutes was significantly lower (p &lt; 0.05, Mann-Whitney U). At the genus level, the abundances of Lactobacillus, Ralstonia, Bacteroides, Akkermansia, Bifidobacterium, Escherichia-Shigella, Faecalibacterium, and Brevibacterium were significantly higher in the blepharitis group than in the healthy control group, while the relative abundances of Bacillus, Staphylococcus, Streptococcus, and Acinetobacter were significantly lower in the blepharitis group (p &lt; 0.05, Mann-Whitney U). The microbiota of anterior blepharitis was similar to that of mixed blepharitis but different from that of posterior blepharitis. Lactobacillus and Bifidobacterium are biomarkers of posterior blepharitis, and Ralstonia is a biomarker of mixed blepharitis. There was no significant difference in the ocular surface microbiota between the eyelid margin and conjunctival sac with or without blepharitis.Conclusion: The ocular surface microbiota of patients with blepharitis varied among different study groups, according to 16S rDNA amplicon sequencing analysis. The reason might be due to the participants being from different environments and having different lifestyles. Lactobacillus, Bifidobacterium, Akkermansia, Ralstonia, and Bacteroides may play important roles in the pathogenesis of blepharitis.


Metabolites ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 226 ◽  
Author(s):  
Seung-Ho Seo ◽  
Tatsuya Unno ◽  
Seong-Eun Park ◽  
Eun-Ju Kim ◽  
Yu-Mi Lee ◽  
...  

The objective of this study was to examine the anti-colitis activity of Jakyakgamcho-tang (JGT) in dextran sulfate sodium (DSS)-induced colitis and explore changes of the gut microbial community using 16S rRNA amplicon sequencing and metabolomics approaches. It was found that treatment with JGT or 5-aminosalicylic acid (5-ASA) alleviated the severity of colitis symptoms by suppressing inflammatory cytokine levels of IL-6, IL-12, and IFN-γ. The non-metric multidimensional scaling analysis of gut microbiome revealed that JGT groups were clearly separated from the DSS group, suggesting that JGT administration altered gut microbiota. The operational taxonomic units (OTUs) that were decreased by DSS but increased by JGT include Akkermansia and Allobaculum. On the other hand, OTUs that were increased by DSS but decreased by 5-ASA or JGT treatments include Bacteroidales S24-7, Ruminococcaceae, and Rikenellaceae, and the genera Bacteroides, Parabacteroides, Oscillospira, and Coprobacillus. After JGT administration, the metabolites, including most amino acids and lactic acid that were altered by colitis induction, became similar to those of the control group. This study demonstrates that JGT might have potential to effectively treat colitis by restoring dysbiosis of gut microbiota and host metabolites.


2016 ◽  
Vol 7 (4) ◽  
pp. 529-538 ◽  
Author(s):  
Y.B. Wang ◽  
W. Du ◽  
A.K. Fu ◽  
X.P. Zhang ◽  
Y. Huang ◽  
...  

The oral administration of Enterococcus faecium EF1 to new-born suckling and weaning piglets along with their growth performances and intestinal microbiota was investigated in this study. Twenty-four new-born piglets were initially divided into 2 groups. The probiotics group received 2 ml of 10% sterilised skimmed milk by oral gavage supplemented with 6×108 cfu/ml viable E. faecium EF1 at the first, the third and the fifth day after birth, while the control group received 2 ml of 10% sterilised skimmed milk without probiotics at the same time. Results showed that oral administration of E. faecium EF1 was associated with a remarkable increase on the body weight of piglets for both suckling and weaning periods, by 30.73% (P<0.01) and 320.84% (P<0.01), and also decreased the diarrhoea rate, by 43.21% (P<0.05) and 71.42% (P<0.05), respectively. In addition, 454-pyrosequencing analysis revealed that there was no significant difference in the intestinal microbial diversity of the suckling piglets between the two groups; nevertheless, when compared to the control group, the relative abundance of Firmicutes in the probiotics group was substantially augmented, while the relative abundance of Proteobacteria, Bacteroidetes and Fusobacteria diminished. However, results indicated that oral administration of E. faecium EF1 did not have any influence on the relative abundance of Firmicutes in weaning piglets rather than increasing the relative abundance of Bacteroidetes and decreasing the relative abundance of Proteobacteria. Furthermore, at the level of the Firmicutes phylum, the relative abundance of Lactobacillales in the probiotic group increased significantly. These findings suggest that oral administration of E. faecium EF1 to new-born piglets could improve the growth performance and intestinal microbiota of piglets for both suckling and weaning periods.


Author(s):  
Meng-yang Liu ◽  
Shao-jun Yun ◽  
Jin-ling Cao ◽  
Feier Cheng ◽  
Ming-chang Chang ◽  
...  

Abstract Background Sparassis crispa polysaccharides (SCPs) have multiple pharmacological activities. Fermentation characteristics of SCPs and its effects on the intestinal microbes in mice remain inconclusive. Results In this study, SCPs were fermented by the human feces and used to administer the Kunming mice to explore the fermentation characteristics of SCPs in the intestinal tract and the effects on the intestinal microbes in mice. Results from in vitro experiments revealed that SCPs were utilized by intestinal microbiota to produce short-chain fatty acids (SCFAs). The specific monosaccharide composition of SCPs determines which SCFAs are produced. Furthermore, the colon index and villi length of the SCPs-treated mice were significantly higher compared with the control group. In addition, SCPs exhibited beneficial effect on the relative abundance and diversity of dominant bacteria in the intestinal tract, such as increasing Bacteroidetes/Firmicutes ratio and up-regulating SCFA-producing bacteria, including Bacteroidales_S24-7_group, Alloprevotella, Alistipes, Bacteroides, Butyricimonas, Parabacteroides, Lachnospiraceae_NK4A136_group and Oscillibacter. SCPs increased the abundance of genes in carbohydrate, amino acid, and energy metabolism. Conclusion Our results indicate SCPs can improve the physiological indices of the colon in mice, which is likely to be associated with the increase in the relative abundance and diversity of SCFA-producing bacteria and SCFAs level produced by intestinal microbiota. Graphic abstract


2021 ◽  
Vol 7 (6) ◽  
pp. 447
Author(s):  
Lysiane Dunière ◽  
Damien Esparteiro ◽  
Yacine Lebbaoui ◽  
Philippe Ruiz ◽  
Mickael Bernard ◽  
...  

Background: In ruminants, physiological and nutritional changes occur peripartum. We investigated if gastro-intestinal microbiota, rumen metabolism and antioxidant status were affected around parturition and what could be the impact of a daily supplementation of a live yeast additive in late gestating ewes. Methods: Rumen, feces and blood samples were collected from 2 groups of 14 ewes one month and a few days before parturition, and 2 weeks postpartum. Results: In the control ewes close to parturition, slight changes in the ruminal microbiota were observed, with a decrease in the concentration F. succinogenes and in the relative abundance of the Fibrobacteres phylum. Moreover, a decrease in the alpha-diversity of the bacterial community and a reduced relative abundance of the Fibrobacteres phylum were observed in their feces. Control ewes were prone to oxidative stress, as shown by an increase in malondialdehyde (MDA) concentration, a lower total antioxidant status, and higher glutathione peroxidase (GPx) activity in the blood. In the yeast supplemented ewes, most of the microbial changes observed in the control group were alleviated. An increase in GPx activity, and a significant decrease in MDA concentration were measured. Conclusions: The live yeast used in this study could stabilize gastro-intestinal microbiota and reduce oxidative stress close to parturition.


Sign in / Sign up

Export Citation Format

Share Document