scholarly journals Effects of Complementary Feeding With Different Protein-Rich Foods on Infant Growth and Gut Health: Study Protocol

2022 ◽  
Vol 9 ◽  
Author(s):  
Minghua Tang ◽  
Kinzie L. Matz ◽  
Lillian M. Berman ◽  
Kathryn N. Davis ◽  
Edward L. Melanson ◽  
...  

Background: An urgent need exists for evidence-based dietary guidance early in life, particularly regarding protein intake. However, a significant knowledge gap exists in the effects of protein-rich foods on growth and development during early complementary feeding.Methods: This is a randomized controlled trial of infant growth and gut health (primary outcomes). We directly compare the effects of dietary patterns with common protein-rich foods (meat, dairy, plant) on infant growth trajectories and gut microbiota development (monthly assessments) during early complementary feeding in both breast- and formula-fed infants. Five-month-old infants (up to n = 300) are randomized to a meat-, dairy-, plant-based complementary diet or a reference group (standard of care) from 5 to 12 months of age, with a 24-month follow-up assessment. Infants are matched for sex, mode of delivery and mode of feeding using stratified randomization. Growth assessments include length, weight, head circumference and body composition. Gut microbiota assessments include both 16S rRNA profiling and metagenomics sequencing. The primary analyses will evaluate the longitudinal effects of the different diets on both anthropometric measures and gut microbiota. The secondary analysis will evaluate the potential associations between gut microbiota and infant growth.Discussion: Findings are expected to have significant scientific and health implications for identifying beneficial gut microbial changes and dietary patterns and for informing dietary interventions to prevent the risk of overweight and later obesity, and promote optimal health.Clinical Trial Registration:www.ClinicalTrials.gov, identifier: NCT05012930.

2016 ◽  
Vol 10 ◽  
pp. CMPed.S40134 ◽  
Author(s):  
Peter Cooper ◽  
Keith D. Bolton ◽  
Sithembiso Velaphi ◽  
Nanda De Groot ◽  
Shahram Emady-Azar ◽  
...  

The gut microbiota of infants is shaped by both the mode of delivery and the type of feeding. The gut of vaginally and cesarean-delivered infants is colonized at different rates and with different bacterial species, leading to differences in the gut microbial composition, which may persist up to 6 months. In a multicenter, randomized, controlled, double-blind trial conducted in South Africa, we tested the effect of a formula supplemented with a prebiotic (a mixture of bovine milk-derived oligosaccharides [BMOS] generated from whey permeate and containing galactooligosaccharides and milk oligosaccharides such as 3′- and 6′-sialyllactose) and the probiotic Bifidobacterium animalis subsp. lactis (B. lactis) strain CNCM I-3446 on the bifidobacteria levels in the gut of infants born vaginally or via cesarean section in early life. Additionally, the safety of the new formulation was evaluated. A total of 430 healthy, full-term infants born to HIV-positive mothers who had elected to feed their child beginning from birth (≤3 days old) exclusively with formula were randomized into this multicenter trial of four parallel groups. A total of 421 infants who had any study formula intake were included in the full analysis set (FAS). The first two groups consisted of cesarean-delivered infants assigned to the Test formula (n = 92) (a starter infant formula [IF] containing BMOS at a total oligosaccharide concentration of 5.8 ± 1.0 g/100 g of powder formula [8 g/L in the reconstituted formula] + B. lactis [1 × 10 7 colony-forming units {cfu}/g]) or a Control IF (n = 101); the second two groups consisted of vaginally delivered infants randomized to the same Test (n = 115) or Control (n = 113) formulas from the time of enrollment to 6 months. The primary efficacy outcome was fecal bifidobacteria count at 10 days, and the primary safety outcome was daily weight gain (g/d) between 10 days and 4 months. At 10 days, fecal bifidobacteria counts were significantly higher in the Test formula than in the Control formula group among infants with cesarean birth (median [range] log: 9.41 [6.30–10.94] cfu/g versus 6.30 [6.30–10.51] cfu/g; P = 0.002) but not among those with vaginal birth (median [range] log: 10.06 [5.93–10.77] cfu/g versus 9.85 [6.15–10.79] cfu/g; P = 0.126). The lower bound of the two-sided 95% confidence interval of the difference in the mean daily weight gain between the Test and Control formula groups was more than –3 g/d in both the vaginally and cesarean-delivered infants, indicating that growth in the Test formula-fed infants was not inferior to that of Control formula-fed infants. At 10 days and 4 weeks, the fecal pH of infants fed the Test formula was significantly lower than in those fed the Control formula, irrespective of mode of delivery: for vaginal delivery: 4.93 versus 5.59; P < 0.001 (10 days) and 5.01 versus 5.71; P < 0.001 (4 weeks); for cesarean delivery: 5.14 versus 5.65, P = 0.009 (10 days) and 5.06 versus 5.75, P < 0.001 (4 weeks). At 3 months, this acidification effect only persisted among cesarean-born infants. IF supplemented with the prebiotic BMOS and probiotic B. lactis induced a strong bifidogenic effect in both delivering modes, but more explicitly correcting the low bifidobacteria level found in cesarean-born infants from birth. The supplemented IF lowered the fecal pH and improved the fecal microbiota in both normal and cesarean-delivered infants. The use of bifidobacteria as a probiotic even in infants who are immunologically at risk is safe and well tolerated.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Minghua Tang ◽  
Daniel Frank ◽  
Audrey Hendricks ◽  
Diana Ir ◽  
Nancy Krebs

Abstract Objectives Distinctive growth patterns were observed in formula-fed infants consuming a meat- or dairy-based complementary diet. The gut microbiota and its metabolites are characterized and compared in infants consuming these two common protein-rich foods. Methods Healthy, term, formula-fed infants were recruited from metro Denver area, matched by sex and race/ethnicity, and randomized to a meat or a dairy complementary food group from 5 to 12 months of age. Meat- and dairy-based complementary foods and the same infant formula were provided. Total protein intake during the 7-month intervention was ∼3 g/kg/d for both groups. Intakes of infant formula, cereal, fruits, and vegetables were ad libitum. 16S rRNA sequencing and fecal metabolomics were conducted on stool samples collected at 5, 10 and 12 months. Results Stool samples were collected from 59 infants (Meat n = 29; Dairy n = 30). Alpha diversity increased over time in the meat group (P = 0.007), not dairy (P = 0.17). Firmicutes was the most abundant phylum for both groups at all time points and Proteobacteria decreased abundance from 5 (10 ± 4%) to 12 months (5 ± 3%) in both groups. At Genus level, Bifidobacterium significantly decreased (21% to 16%, P = 0.001) and Faecalibacteriumsignificantly increased (0.5 to 3.5%, P = 0.0006) over time in both groups, as expected for this age range and with the transition to complementary feeding. A significant group-by-time interaction was observed for Ruminococcus (P = 0.001) and Roseburia (P = 0.002), with increased abundances only in the meat group, not dairy. The abundance of Ruminococcus at 12 months was positively associated with length-for-age Z scores in the dairy group (P = 0.007, R2 = 31%). Both Ruminococcus and Roseburia are potential short-chain fatty acid producers and we saw a significant increase of butyrate and acetate productions in the meat group over time. Conclusions Types of protein-rich foods during complementary feeding were associated with the gut microbial composition and metabolites in formula-fed infants. These changes of the gut microbiota may be associated with the different infant growth patterns. Funding Sources NIH (NIDDK), NIH/NCATS Colorado CTSA and (alphabetically) Abbott Nutrition, the American Heart Association, the Beef Checkoff through the National Cattlemen's Beef Association, Leprino foods, the National Pork Board.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nicole Rodriguez ◽  
Hein M. Tun ◽  
Catherine J. Field ◽  
Piushkumar J. Mandhane ◽  
James A. Scott ◽  
...  

Depressive symptoms are common during pregnancy and are estimated to affect 7–20% of pregnant women, with higher prevalence found in those with a prior history of depression, in ethnic minorities, and those with increased exposure to stressful life events. Maternal depression often remains undiagnosed, and its symptoms can increase adverse health risks to the infant, including impaired cognitive development, behavioral problems, and higher susceptibility to physical illnesses. Accumulating research evidence supports the association between maternal physical health elements to infant gut health, including factors such as mode of delivery, medication, feeding status, and antibiotic use. However, specific maternal prenatal psychosocial factors and their effect on infant gut microbiota and immunity remains an area that is not well understood. This article reviews the literature and supplements it with new findings to show that prenatal depression alters: (i) gut microbial composition in partially and fully formula-fed infants at 3–4 months of age, and (ii) gut immunity (i.e., secretory Immunoglobulin A) in all infants independent of breastfeeding status. Understanding the implications of maternal depression on the infant gut microbiome is important to enhance both maternal and child health and to better inform disease outcomes and management.


BMJ Open ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. e024872 ◽  
Author(s):  
Robert U Newton ◽  
Claus T Christophersen ◽  
Ciaran M Fairman ◽  
Nicolas H Hart ◽  
Dennis R Taaffe ◽  
...  

IntroductionA potential link exists between prostate cancer (PCa) disease and treatment and increased inflammatory levels from gut dysbiosis. This study aims to examine if exercise favourably alters gut microbiota in men receiving androgen deprivation therapy (ADT) for PCa. Specifically, this study will explore whether: (1) exercise improves the composition of gut microbiota and increases the abundance of bacteria associated with health promotion and (2) whether gut health correlates with favourable inflammatory status, bowel function, continence and nausea among patients participating in the exercise intervention.Methods and analysisA single-blinded, two-armed, randomised controlled trial will explore the influence of a 3-month exercise programme (3 days/week) for men with high-risk localised PCa receiving ADT. Sixty patients will be randomly assigned to either exercise intervention or usual care. The primary endpoint (gut health and function assessed via feacal samples) and secondary endpoints (self-reported quality of life via standardised questionnaires, blood biomarkers, body composition and physical fitness) will be measured at baseline and following the intervention. A variety of statistical methods will be used to understand the covariance between microbial diversity and metabolomics profile across time and intervention. An intention-to-treat approach will be utilised for the analyses with multiple imputations followed by a secondary sensitivity analysis to ensure data robustness using a complete cases approach.Ethics and disseminationEthics approval was obtained from the Human Research Ethics Committee of Edith Cowan University (ID: 19827 NEWTON). Findings will be reported in peer-reviewed publications and scientific conferences in addition to working with national support groups to translate findings for the broader community. If exercise is shown to result in favourable changes in gut microbial diversity, composition and metabolic profile, and reduce gastrointestinal complications in PCa patients receiving ADT, this study will form the basis of a future phase III trial.Trial registration numberANZCTR12618000280202.


2021 ◽  
Author(s):  
Carly Zanatta ◽  
Peter Fritz ◽  
Elena Comelli ◽  
Wendy Ward

Abstract Background: Periodontal disease is a chronic state of inflammation that can destroy the supporting tissues around the teeth, leading to the resorption of alveolar bone. The initial strategy for treating periodontal disease is non-surgical sanative therapy (ST). Periodontal disease can also induce dysbiosis in the gut microbiota and contribute to low grade systemic inflammation. Prebiotic fibres such as inulin can selectively alter the intestinal microbiota and support homeostasis by improving gut barrier functions and preventing inflammation. Providing an inulin supplement prior to and post-ST may influence periodontal health while providing insight into the complex relationship between periodontal disease and the gut microbiota. The primary objective is to determine if inulin is more effective than the placebo at improving clinical periodontal outcomes including probing depth (PD) and bleeding on probing (BOP). Secondary objectives include determining the effects of inulin supplementation pre and post-ST on salivary markers of inflammation and periodontal-associated pathogens, as these outcomes reflect more rapid changes that can occur.Methods: We will employ a single-center, randomized, double-blind, placebo-controlled study design and recruit and randomize 170 participants who are receiving ST to manage periodontal disease to the intervention (inulin) or placebo (maltodextrin) group. A pilot study will be embedded within the randomized controlled trial using the first 48 participants to test feasibility for the larger, powered trial. The intervention period will begin 4 weeks before ST through to their follow-up appointment at 10 weeks post-ST. Clinical outcomes of periodontal disease including number of sites with PD ≥ 4 mm and the absence of BOP will be measured at baseline and post-ST. Salivary markers of inflammation, periodontal-associated pathogens, body mass index and diet will be measured at baseline, pre-ST (after 4 weeks of intervention) and post-ST (after 14 weeks of intervention). Discussion: We expect that inulin to enhance the positive effect of ST on the management of periodontal disease. The results of the study will provide guidance regarding the use of prebiotics prior to and as a supportive adjunct to ST for periodontal health. Trial registration ClinicalTrials.gov: NCT04670133. Registered on 17 December 2020 https://clinicaltrials.gov/ct2/show/NCT04670133


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Carly A. R. Zanatta ◽  
Peter C. Fritz ◽  
Elena M. Comelli ◽  
Wendy E. Ward

Abstract Background Periodontal disease is a chronic state of inflammation that can destroy the supporting tissues around the teeth, leading to the resorption of alveolar bone. The initial strategy for treating periodontal disease is non-surgical sanative therapy (ST). Periodontal disease can also induce dysbiosis in the gut microbiota and contribute to low-grade systemic inflammation. Prebiotic fibers such as inulin can selectively alter the intestinal microbiota and support homeostasis by improving gut barrier functions and preventing inflammation. Providing an inulin supplement prior to and post-ST may influence periodontal health while providing insight into the complex relationship between periodontal disease and the gut microbiota. The primary objective is to determine if inulin is more effective than the placebo at improving clinical periodontal outcomes including probing depth (PD) and bleeding on probing (BOP). Secondary objectives include determining the effects of inulin supplementation pre- and post-ST on salivary markers of inflammation and periodontal-associated pathogens, as these outcomes reflect more rapid changes that can occur. Methods We will employ a single-center, randomized, double-blind, placebo-controlled study design and recruit and randomize 170 participants who are receiving ST to manage the periodontal disease to the intervention (inulin) or placebo (maltodextrin) group. A pilot study will be embedded within the randomized controlled trial using the first 48 participants to test the feasibility for the larger, powered trial. The intervention period will begin 4 weeks before ST through to their follow-up appointment at 10 weeks post-ST. Clinical outcomes of periodontal disease including the number of sites with PD ≥ 4 mm and the presence of BOP will be measured at baseline and post-ST. Salivary markers of inflammation, periodontal-associated pathogens, body mass index, and diet will be measured at baseline, pre-ST (after 4 weeks of intervention), and post-ST (after 14 weeks of intervention). Discussion We expect that inulin will enhance the positive effect of ST on the management of periodontal disease. The results of the study will provide guidance regarding the use of prebiotics prior to and as a supportive adjunct to ST for periodontal health. Trial registration ClinicalTrials.gov NCT04670133. Registered on 17 December 2020.


2019 ◽  
Vol 20 (2) ◽  
pp. 123-129 ◽  
Author(s):  
Mariana Jesus ◽  
Tânia Silva ◽  
César Cagigal ◽  
Vera Martins ◽  
Carla Silva

Introduction: The field of nutritional psychiatry is a fast-growing one. Although initially, it focused on the effects of vitamins and micronutrients in mental health, in the last decade, its focus also extended to the dietary patterns. The possibility of a dietary cost-effective intervention in the most common mental disorder, depression, cannot be overlooked due to its potential large-scale impact. Method: A classic review of the literature was conducted, and studies published between 2010 and 2018 focusing on the impact of dietary patterns in depression and depressive symptoms were included. Results: We found 10 studies that matched our criteria. Most studies showed an inverse association between healthy dietary patterns, rich in fruits, vegetables, lean meats, nuts and whole grains, and with low intake of processed and sugary foods, and depression and depressive symptoms throughout an array of age groups, although some authors reported statistical significance only in women. While most studies were of cross-sectional design, making it difficult to infer causality, a randomized controlled trial presented similar results. Discussion: he association between dietary patterns and depression is now well-established, although the exact etiological pathways are still unknown. Dietary intervention, with the implementation of healthier dietary patterns, closer to the traditional ones, can play an important role in the prevention and adjunctive therapy of depression and depressive symptoms. Conclusion: More large-scale randomized clinical trials need to be conducted, in order to confirm the association between high-quality dietary patterns and lower risk of depression and depressive symptoms.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 388
Author(s):  
Minghua Tang ◽  
Nicholas E. Weaver ◽  
Lillian M. Berman ◽  
Laura D. Brown ◽  
Audrey E. Hendricks ◽  
...  

Background: Research is limited in evaluating the mechanisms responsible for infant growth in response to different protein-rich foods; Methods: Targeted and untargeted metabolomics analysis were conducted on serum samples collected from an infant controlled-feeding trial that participants consumed a meat- vs. dairy-based complementary diet from 5 to 12 months of age, and followed up at 24 months. Results: Isoleucine, valine, phenylalanine increased and threonine decreased over time among all participants; Although none of the individual essential amino acids had a significant impact on changes in growth Z scores from 5 to 12 months, principal component heavily weighted by BCAAs (leucine, isoleucine, valine) and phenylalanine had a positive association with changes in length-for-age Z score from 5 to 12 months. Concentrations of acylcarnitine-C4, acylcarnitine-C5 and acylcarnitine-C5:1 significantly increased over time with the dietary intervention, but none of the acylcarnitines were associated with infant growth Z scores. Quantitative trimethylamine N-oxide increased in the meat group from 5 to 12 months; Conclusions: Our findings suggest that increasing total protein intake by providing protein-rich complementary foods was associated with increased concentrations of certain essential amino acids and short-chain acyl-carnitines. The sources of protein-rich foods (e.g., meat vs. dairy) did not appear to differentially impact serum metabolites, and comprehensive mechanistic investigations are needed to identify other contributors or mediators of the diet-induced infant growth trajectories.


2021 ◽  
Vol 134 ◽  
pp. 111117
Author(s):  
Belén Pastor-Villaescusa ◽  
Julio Plaza-Díaz ◽  
Alejandro Egea-Zorrilla ◽  
Rosaura Leis ◽  
Gloria Bueno ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yueqin Qiu ◽  
Jun Yang ◽  
Li Wang ◽  
Xuefen Yang ◽  
Kaiguo Gao ◽  
...  

Abstract Background Deoxynivalenol (DON) is a widespread mycotoxin that induces intestinal inflammation and oxidative stress in humans and animals. Resveratrol (RES) effectively exerts anti-inflammatory and antioxidant effects. However, the protective effects of RES on alleviating DON toxicity in piglets and the underlying mechanism remain unclear. Therefore, this study aimed to investigate the effect of RES on growth performance, gut health and the gut microbiota in DON-challenged piglets. A total of 64 weaned piglets [Duroc × (Landrace × Yorkshire), 21-d-old, 6.97 ± 0.10 kg body weight (BW)] were randomly allocated to 4 treatment groups (8 replicate pens per treatment, each pen containing 2 males; n = 16 per treatment) for 28 d. The piglets were fed a control diet (CON) or the CON diet supplemented with 300 mg RES/kg diet (RES group), 3.8 mg DON/kg diet (DON) or both (DON+RES) in a 2 × 2 factorial design. Results DON-challenged piglets fed the RES-supplemented diet had significantly decreased D-lactate concentrations and tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) mRNA and protein expression, and increased zonula occludens-1 (ZO-1) mRNA and protein expression compared with those of DON-challenged piglets fed the unsupplemented diet (P < 0.05). Compared with unsupplemented DON-challenged piglets, infected piglets fed a diet with RES showed significantly decreased malondialdehyde (MDA) levelsand increased mRNA expression of antioxidant enzymes and antioxidant genes (i.e., GCLC, GCLM, HO-1, SOD1 and NQO-1) and glutamate-cysteine-ligase modulatory subunit (GCLM) protein expression (P < 0.05). Moreover, RES supplementation significantly abrogated the increase in the proportion of TUNEL-positive cells and the protein expression of caspase3 in DON-challenged piglets (P < 0.05). Finally, RES supplementation significantly increased the abundance of Roseburia and butyrate concentrations, while decreasing the abundances of Bacteroides and unidentified-Enterobacteriaceae in DON-challenged piglets compared with DON-challenged piglets alone (P < 0.05). Conclusions RES supplementation improved gut health in DON-challenged piglets by strengthening intestinal barrier function, alleviating intestinal inflammation and oxidative damage, and positively modulating the gut microbiota. The protective effects of RES on gut health may be linked to increased Roseburia and butyrate concentrations, and decreased levels of Bacteroides and unidentified-Enterobacteriaceae.


Sign in / Sign up

Export Citation Format

Share Document