scholarly journals Enhanced Flavonoid Accumulation Reduces Combined Salt and Heat Stress Through Regulation of Transcriptional and Hormonal Mechanisms

2021 ◽  
Vol 12 ◽  
Author(s):  
Rahmatullah Jan ◽  
Nari Kim ◽  
Seo-Ho Lee ◽  
Muhammad Aaqil Khan ◽  
Sajjad Asaf ◽  
...  

Abiotic stresses, such as salt and heat stress, coexist in some regions of the world and can have a significant impact on agricultural plant biomass and production. Rice is a valuable crop that is susceptible to salt and high temperatures. Here, we studied the role of flavanol 3-hydroxylase in response to combined salt and heat stress with the aim of better understanding the defensive mechanism of rice. We found that, compared with wild-type plants, the growth and development of transgenic plants were improved due to higher biosynthesis of kaempferol and quercetin. Furthermore, we observed that oxidative stress was decreased in transgenic plants compared with that in wild-type plants due to the reactive oxygen species scavenging activity of kaempferol and quercetin as well as the modulation of glutathione peroxidase and lipid peroxidase activity. The expression of high-affinity potassium transporter (HKT) and salt overly sensitive (SOS) genes was significantly increased in transgenic plants compared with in control plants after 12 and 24 h, whereas sodium-hydrogen exchanger (NHX) gene expression was significantly reduced in transgenic plants compared with in control plants. The expression of heat stress transcription factors (HSFs) and heat shock proteins (HSPs) in the transgenic line increased significantly after 6 and 12 h, although our understanding of the mechanisms by which the F3H gene regulates HKT, SOS, NHX, HSF, and HSP genes is limited. In addition, transgenic plants showed higher levels of abscisic acid (ABA) and lower levels of salicylic acid (SA) than were found in control plants. However, antagonistic cross talk was identified between these hormones when the duration of stress increased; SA accumulation increased, whereas ABA levels decreased. Although transgenic lines showed significantly increased Na+ ion accumulation, K+ ion accumulation was similar in transgenic and control plants, suggesting that increased flavonoid accumulation is crucial for balancing Na+/K+ ions. Overall, this study suggests that flavonoid accumulation increases the tolerance of rice plants to combined salt and heat stress by regulating physiological, biochemical, and molecular mechanisms.

2020 ◽  
Vol 11 ◽  
Author(s):  
Marine Josephine Paupière ◽  
Yury Tikunov ◽  
Enrico Schleiff ◽  
Arnaud Bovy ◽  
Sotirios Fragkostefanakis

Plants respond to high temperatures with global changes of the transcriptome, proteome, and metabolome. Heat stress transcription factors (Hsfs) are the core regulators of transcriptome responses as they control the reprogramming of expression of hundreds of genes. The thermotolerance-related function of Hsfs is mainly based on the regulation of many heat shock proteins (HSPs). Instead, the Hsf-dependent reprogramming of metabolic pathways and their contribution to thermotolerance are not well described. In tomato (Solanum lycopersicum), manipulation of HsfB1, either by suppression or overexpression (OE) leads to enhanced thermotolerance and coincides with distinct profile of metabolic routes based on a metabolome profiling of wild-type (WT) and HsfB1 transgenic plants. Leaves of HsfB1 knock-down plants show an accumulation of metabolites with a positive effect on thermotolerance such as the sugars sucrose and glucose and the polyamine putrescine. OE of HsfB1 leads to the accumulation of products of the phenylpropanoid and flavonoid pathways, including several caffeoyl quinic acid isomers. The latter is due to the enhanced transcription of genes coding key enzymes in both pathways, in some cases in both non-stressed and stressed plants. Our results show that beyond the control of the expression of Hsfs and HSPs, HsfB1 has a wider activity range by regulating important metabolic pathways providing an important link between stress response and physiological tomato development.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 693 ◽  
Author(s):  
Feng Qin ◽  
Liang Lin ◽  
Yanxia Jia ◽  
Weiqi Li ◽  
Buzhu Yu

At the cellular level, the remodelling of membrane lipids and production of heat shock proteins are the two main strategies whereby plants survive heat stress. Although many studies related to glycerolipids and HSPs under heat stress have been reported separately, detailed alterations of glycerolipids and the role of HSPs in the alterations of glycerolipids still need to be revealed. In this study, we profiled the glycerolipids of wild-type Arabidopsis and its HSP101-deficient mutant hot-1 under two types of heat stress. Our results demonstrated that the alterations of glycerolipids were very similar in wild-type Arabidopsis and hot-1 during heat stress. Although heat acclimation led to a slight decrease of glycerolipids, the decrease of glycerolipids in plants without heat acclimation is more severe under heat shock. The contents of 36:x monogalactosyl diacylglycerol (MGDG) were slightly increased, whereas that of 34:6 MGDG and 34:4 phosphatidylglycerol (PG) were severely decreased during moderate heat stress. Our findings suggested that heat acclimation could reduce the degradation of glycerolipids under heat shock. Synthesis of glycerolipids through the prokaryotic pathway was severely suppressed, whereas that through the eukaryotic pathway was slightly enhanced during moderate heat stress. In addition, HSP101 has a minor effect on the alterations of glycerolipids under heat stress.


Author(s):  
Hao Yang ◽  
Yulong Zhao ◽  
Ning Chen ◽  
Yanpei Liu ◽  
Shaoyu Yang ◽  
...  

Abstract In plants, 3´,5´-cyclic adenosine monophosphate (cAMP) is an important second messenger with varied functions; however, only a few adenylyl cyclases (ACs) that synthesize cAMP have been identified. Moreover, the biological roles of ACs/cAMP in response to stress remain largely unclear. In this study, we used quantitative proteomics techniques to identify a maize heat-induced putative disease-resistance RPP13-like protein 3 (ZmRPP13-LK3), which has three conserved catalytic AC centres. The AC activity of ZmRPP13-LK3 was confirmed by in vitro enzyme activity analysis, in vivo RNAi experiments, and functional complementation in the E. coli cyaA mutant. ZmRPP13-LK3 is located in the mitochondria. The results of in vitro and in vivo experiments indicated that ZmRPP13-LK3 interacts with ZmABC2, a possible cAMP exporter. Under heat stress, the concentrations of ZmRPP13-LK3 and cAMP in the ABA-deficient mutant vp5 were significantly less than those in the wild-type, and treatment with ABA and an ABA inhibitor affected ZmRPP13-LK3 expression in the wild-type. Application of 8-Br-cAMP, a cAMP analogue, increased heat-induced expression of heat-shock proteins in wild-type plants and alleviated heat-activated oxidative stress. Taken together, our results indicate that ZmRPP13-LK3, a new AC, can catalyse ATP for the production of cAMP and may be involved in ABA-regulated heat resistance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaojuan Xing ◽  
Yurong Ding ◽  
Jinyu Jin ◽  
Aiping Song ◽  
Sumei Chen ◽  
...  

Heat stress limits the growth and development of chrysanthemum seedlings. Although melatonin (MT) has been linked to the heat stress response in plants, research on the underlying molecular mechanisms is scarce. In this study, the regulatory networks of MT on heat stress in chrysanthemum seedlings were explored. Physiological measurements suggested that MT not only reduced malondialdehyde accumulation, hydrogen peroxide content, and superoxide anion free radical generation rate, but also significantly promoted osmotic regulation substance synthesis (proline and soluble protein), antioxidant accumulation (GSH and AsA), and the antioxidant enzyme activities (SOD, POD, CAT, and APX) in chrysanthemum leaves under heat stress. Furthermore, MT increased the fresh weight, dry weight, chlorophyll content, photosynthesis rate, and gas exchange indexes. Further, RNA-seq results revealed 33,497 and 36,740 differentially expressed genes in the S/Con and SMT/ConMT comparisons, respectively. The differences in the comparisons revealed that MT regulated heat shock transcription factors (HSFs) and heat shock proteins (HSPs), and the genes involved in Ca2+ signal transduction (CNGCs and CAM/CMLs), starch and sucrose metabolism (EDGL, BGLU, SuS, and SPS), hormone (PP2Cs, AUX/IAAs, EBFs, and MYC2), chlorophyll metabolism (HEMA and PORA), flavonoid biosynthesis (CHS, DFR, and FNS), and carotenoid biosynthesis (DXPS, GGDP, and PSY). MT effectively improved chrysanthemum seedling heat-resistance. Our study, thus, provides novel evidence of a gene network regulated by MT under heat stress.


2021 ◽  
Author(s):  
YaFan Chan ◽  
Chia-Yu Chen ◽  
Chih-Ying Lu ◽  
Yung-Chi Tu ◽  
Kshitij Tandon ◽  
...  

Endozoicomonas, a core bacterial group in corals, may also be a coral symbiont. Endozoicomonas communities often decrease rapidly in corals under heat stress. However, how the bacteria respond to changes in temperature and coral host during heat stress is unknown. Here, we employed the cultivable, dominant species E. montiporae as a working organism to explore how Endozoicomonas responds to heat stress. We designed two experiments to clarify the extent to which E. montiporae is influenced by temperature and coral host. We detected differentially expressed protein (DEP) profiles in this bacterium at 31°C and 33°C compared to 25°C by tandem mass tags-based quantitative proteome analysis. Fifty DEPs, including many heat shock proteins, were detected when the temperature changed. The expression of antioxidant defense proteins and key pyruvate synthase proteins decreased, suggesting that E. montiporae were in a physiology of stress at 33°C. Furthermore, some proteins were differentially expressed because of the heat-stress-treated coral lysate specifically, suggesting that not only heat but also heat-induced host factors can affect the protein expression of the bacterium. This study provides an in-depth analysis of how the molecular mechanisms of Endozoicomonas are affected by heat stress and coral host.


2016 ◽  
Vol 66 (3-4) ◽  
pp. 321-333 ◽  
Author(s):  
Yunyun Cheng ◽  
Songcai Liu ◽  
Ying Zhang ◽  
Dan Su ◽  
Gang Wang ◽  
...  

Heat stress dramatically decreases bull sperm quality and has recently received more attention due to the warmer global climate and more intensive production. However, no data exist regarding sperm quality or the related molecular mechanisms under heat stress. Recent studies showed that inducible heat shock proteins (HSPs) play an important role in the dairy heat stress regulation. In this article, to investigate the impacts of heat stress on sperm quality and the associated molecular mechanisms, sperm quality and enzyme activities concerning acrosome reaction were assessed in Simmental, Limousin and Yanbian bulls under heat stress. Subsequently, changes in heat shock protein expression profiles of Simmental bulls were observed, because we observed that sperm quality of these bulls was most sensitive to heat stress. Finally, the relationship between sperm quality and heat shock protein expression under heat stress was analyzed. The results show that summer heat stress decreased the sperm quality of the three bull breeds significantly. Moreover, different levels of heat stimulation induced various enzyme activity changes, among which the activity change in acrosomal enzyme was the most remarkable. Furthermore, the expression of heat shock proteins in the sperm was influenced by the imposed heat stress, among which the expression levels of HSP60 and HSP70 were increased while HSP90 decreased. In summary, our data show that heat stress seriously affects sperm quality and that HSP90 was most sensitive, although it should be noted that seasonal effects may confound these results. This change in heat shock protein expression may be the major factor that affected the sperm quality of the bulls. The findings may provide a new hypothesis for how heat stress impacts reproduction mechanistically.


Horticulturae ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 117
Author(s):  
Yan-Li Liu ◽  
Shuai Liu ◽  
Jing-Jing Xiao ◽  
Guo-Xin Cheng ◽  
Haq Saeed ul ◽  
...  

Pepper is a thermophilic crop, shallow-rooted plant that is often severely affected by abiotic stresses such as heat, salt, and drought. The growth and development of pepper is seriously affected by adverse stresses, resulting in decreases in the yield and quality of pepper crops. Small heat shock proteins (s HSPs) play a crucial role in protecting plant cells against various stresses. A previous study in our laboratory showed that the expression level of CaHSP18.1a was highly induced by heat stress, but the function and mechanism of CaHSP18.1a responding to abiotic stresses is not clear. In this study, we first analyzed the expression of CaHSP18.1a in the thermo-sensitive B6 line and thermo-tolerant R9 line and demonstrated that the transcription of CaHSP18.1a was strongly induced by heat stress, salt, and drought stress in both R9 and B6, and that the response is more intense and earlier in the R9 line. In the R9 line, the silencing of CaHSP18.1a decreased resistance to heat, drought, and salt stresses. The silencing of CaHSP18.1a resulted in significant increases in relative electrolyte leakage (REL) and malonaldehyde (MDA) contents, while total chlorophyll content decreased under heat, salt, and drought stresses. Overexpression analyses of CaHSP18.1a in transgenic Arabidopsis further confirmed that CaHSP18.1a functions positively in resistance to heat, drought, and salt stresses. The transgenic Arabidopsis had higherchlorophyll content and activities of superoxide dismutase, catalase, and ascorbate peroxidase than the wild type (WT). However, the relative conductivity and MDA content were decreased in transgenic Arabidopsis compared to the wild type (WT). We further showed that the CaHSP18.1a protein is localized to the cell membrane. These results indicate CaHSP18.1a may act as a positive regulator of responses to abiotic stresses.


2021 ◽  
Vol 22 (5) ◽  
pp. 2481
Author(s):  
Jodi Callwood ◽  
Kalpalatha Melmaiee ◽  
Krishnanand P. Kulkarni ◽  
Amaranatha R. Vennapusa ◽  
Diarra Aicha ◽  
...  

Blueberries (Vaccinium spp.) are highly vulnerable to changing climatic conditions, especially increasing temperatures. To gain insight into mechanisms underpinning the response to heat stress, two blueberry species were subjected to heat stress for 6 and 9 h at 45 °C, and leaf samples were used to study the morpho-physiological and transcriptomic changes. As compared with Vaccinium corymbosum, Vaccinium darrowii exhibited thermal stress adaptation features such as small leaf size, parallel leaf orientation, waxy leaf coating, increased stomatal surface area, and stomatal closure. RNAseq analysis yielded ~135 million reads and identified 8305 differentially expressed genes (DEGs) during heat stress against the control samples. In V. corymbosum, 2861 and 4565 genes were differentially expressed at 6 and 9 h of heat stress, whereas in V. darrowii, 2516 and 3072 DEGs were differentially expressed at 6 and 9 h, respectively. Among the pathways, the protein processing in the endoplasmic reticulum (ER) was the highly enriched pathway in both the species: however, certain metabolic, fatty acid, photosynthesis-related, peroxisomal, and circadian rhythm pathways were enriched differently among the species. KEGG enrichment analysis of the DEGs revealed important biosynthesis and metabolic pathways crucial in response to heat stress. The GO terms enriched in both the species under heat stress were similar, but more DEGs were enriched for GO terms in V. darrowii than the V. corymbosum. Together, these results elucidate the differential response of morpho-physiological and molecular mechanisms used by both the blueberry species under heat stress, and help in understanding the complex mechanisms involved in heat stress tolerance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qian-Hao Zhu ◽  
Warwick Stiller ◽  
Philippe Moncuquet ◽  
Stuart Gordon ◽  
Yuman Yuan ◽  
...  

Abstract Fiber mutants are unique and valuable resources for understanding the genetic and molecular mechanisms controlling initiation and development of cotton fibers that are extremely elongated single epidermal cells protruding from the seed coat of cottonseeds. In this study, we reported a new fuzzless-tufted cotton mutant (Gossypium hirsutum) and showed that fuzzless-tufted near-isogenic lines (NILs) had similar agronomic traits and a higher ginning efficiency compared to their recurrent parents with normal fuzzy seeds. Genetic analysis revealed that the mutant phenotype is determined by a single incomplete dominant locus, designated N5. The mutation was fine mapped to an approximately 250-kb interval containing 33 annotated genes using a combination of bulked segregant sequencing, SNP chip genotyping, and fine mapping. Comparative transcriptomic analysis using 0–6 days post-anthesis (dpa) ovules from NILs segregating for the phenotypes of fuzzless-tufted (mutant) and normal fuzzy cottonseeds (wild-type) uncovered candidate genes responsible for the mutant phenotype. It also revealed that the flanking region of the N5 locus is enriched with differentially expressed genes (DEGs) between the mutant and wild-type. Several of those DEGs are members of the gene families with demonstrated roles in cell initiation and elongation, such as calcium-dependent protein kinase and expansin. The transcriptome landscape of the mutant was significantly reprogrammed in the 6 dpa ovules and, to a less extent, in the 0 dpa ovules, but not in the 2 and 4 dpa ovules. At both 0 and 6 dpa, the reprogrammed mutant transcriptome was mainly associated with cell wall modifications and transmembrane transportation, while transcription factor activity was significantly altered in the 6 dpa mutant ovules. These results imply a similar molecular basis for initiation of lint and fuzz fibers despite certain differences.


Author(s):  
Kazuho Isono ◽  
Ryo Tsukimoto ◽  
Satoshi Iuchi ◽  
Akihisa Shinozawa ◽  
Izumi Yotsui ◽  
...  

Abstract Plants are often exposed not only to short-term (S-) heat stress but also to diurnal long-term (L-) heat stress over several consecutive days. To reveal the mechanisms underlying L-heat stress tolerance, we here used a forward genetic screening for sensitive to long-term heat (sloh) mutants and isolated sloh4. The mutant was hypersensitive to L- but not S-heat stress. The causal gene of sloh4 was identical to MIP3 encoding a member of the MAIGO2 (MAG2) tethering complex, which is composed of the MAG2, MIP1, MIP2, and MIP3 subunits and is localized at the endoplasmic reticulum (ER) membrane. Although sloh4/mip3 was hypersensitive to L-heat stress, the sensitivity of the mag2-3 and mip1–1 mutants was similar to that of the wild type. Under L-heat stress, the ER stress and the following unfolded protein response (UPR) were more pronounced in sloh4 than in the wild type. Transcript levels of bZIP60-regulated UPR genes were strongly increased in sloh4 under L-heat stress. Two processes known to be mediated by INOSITOL REQUIRING ENZYME1 (IRE1)—accumulation of the spliced bZIP60 transcript and a decrease in the transcript levels of PR4 and PRX34, encoding secretory proteins—were observed in sloh4 in response to L-heat stress. These findings suggest that misfolded proteins generated in sloh4 under L-heat stress may be recognized by IRE1 but not bZIP28, resulting in initiation of the UPR via activated bZIP60. Therefore, it would be possible that only MIP3 in MAG2 complex has an additional function in L-heat tolerance, which is not related to the ER–Golgi vesicle tethering.


Sign in / Sign up

Export Citation Format

Share Document