scholarly journals Wettability and Water Uptake Improvement in Plasma-Treated Alfalfa Seeds

Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 96
Author(s):  
Matej Holc ◽  
Peter Gselman ◽  
Gregor Primc ◽  
Alenka Vesel ◽  
Miran Mozetič ◽  
...  

The cultivation of alfalfa (Medicago sativa L.), a forage crop grown worldwide, is negatively affected by hard seed presence. We show that treatment of alfalfa seeds with an inductively coupled radio frequency oxygen plasma improves their surface hydrophilicity, as determined by water contact angle (WCA) measurements and water uptake. Furthermore, we see that these effects are mediated by functionalization and etching of the alfalfa seed surface. Surface chemistry is analyzed by X-ray photoelectron spectroscopy (XPS), while morphology is viewed using scanning electron microscopy (SEM). Plasma produces effective alfalfa seed hydrophilization with a variety of treatment parameters. With its potential for fine-tuning, plasma modification of seed wettability shows promise for introduction into agricultural practice.

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 942 ◽  
Author(s):  
Nicolas Delaporte ◽  
Michel L. Trudeau ◽  
Daniel Bélanger ◽  
Karim Zaghib

In this study, a carbon-coated LiFePO4 (LFP/C) powder was chemically grafted with trifluoromethylphenyl groups in order to increase its hydrophobicity and to protect it from moisture. The modification was carried out by the spontaneous reduction of in situ generated 4-trifluoromethylphenyl ions produced by the diazotization of 4-trifluoromethylaniline. X-ray photoelectron spectroscopy was used to analyze the surface organic species of the modified powder. The hydrophobic properties of the modified powder were investigated by carrying out its water contact angle measurements. The presence of the trifluoromethylphenyl groups on the carbon-coated LiFePO4 powder increased its stability in deionized water and reduced its iron dissolution in the electrolyte used for assembling the battery. The thermogravimetric and inductively coupled plasma atomic emission spectroscopy analyses revealed that 0.2–0.3 wt.% Li was deinserted during grafting and that the loading of the grafted molecules varied from 0.5 to 0.8 wt.% depending on the reaction conditions. Interestingly, the electrochemical performance of the modified LFP/C was not adversely affected by the presence of the trifluoromethylphenyl groups on the carbon surface. The chemical relithiation of the grafted samples was carried out using LiI as the reducing agent and the lithium source in order to obtain fully lithiated grafted powders.


2014 ◽  
Vol 783-786 ◽  
pp. 1396-1401 ◽  
Author(s):  
Mei Wang ◽  
Ying Zhao ◽  
Rui Zhen Xu ◽  
Ming Zhang ◽  
Ricky K.Y. Fu ◽  
...  

Diamond-like carbon (DLC) films were synthesized on a p-type silicon wafer using radio-frequency plasma composed of a mixture of Ar and C2H2(ratio of 7 to 28). NH3plasma treatment of as-grown DLC substrate was carried out to generate surface-terminal amino groups while oxidation of as-grown DLC was performed in O2plasma. X-ray photoelectron spectroscopy (XPS) was used to characterize the different surface functions formed on DLC surfaces. Water contact angle measurements indicate different wetbility of modified surfaces. The cell (Mouse MC3T3-E1pre-osteoblasts) morphology and proliferation were monitored to evaluate the biocompatibility of the modified DLC surfaces. A cell count kit-8 (CCK-8 Beyotime) was employed to determine quantitatively the viable pre-osteoblasts. The cell viability assay shows that osteoblast proliferation are improved on NH3and O2plasma-treated DLC surface after culturing for 1day, 2days and 3 days. The cell-surface interactions are studied by fluorescence microscopy. There are more osteoblasts as well as better spreading on the aminated and oxidized surfaces after culturing for 3 days. In summary, compared to the as-grown sample, the modified DLC shows better biocompatibility.


2019 ◽  
Vol 32 (6) ◽  
pp. 611-619 ◽  
Author(s):  
Xiaoli Liu ◽  
Zhen Ge ◽  
Wenguo Zhang ◽  
Yunjun Luo

Due to their unique physicochemical properties, polysilazanes exhibit excellent performance when combined with some resin matrixes, which had drawn great research attention. In this article, polyurethane (PU) was firstly prepared by polytetrahydrofuran glycol, isophorone diisocyanate, and 1,4-butanediol as main materials. Then, the prepared PU was blended with polysilazane by mixing the two solutions together, which was cured to films via dip-coating method at room temperature. The structure, thermal stability, and surface properties of the composite coatings were investigated by Fourier-transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy. The results demonstrated that after modification with polysilazane, the heat resistance, hydrophobicity, and mechanical property of the PU coatings were improved. When the content of polysilazane was 6 wt%, the mechanical property of the composite films was optimized, with a maximum tensile strength of 25.7 MPa and elongation at break of 797%. Meanwhile, the water contact angle of the composite film was 107° and the water absorption reached a minimum of 2.1%, which showed improved hydrophobicity and water resistance.


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 706 ◽  
Author(s):  
Chaoqun Wu ◽  
Yudan Zhou ◽  
Haitao Wang ◽  
Jianhua Hu

Zwitterionic polymers are suitable for replacing poly(ethylene glycol) (PEG) polymers because of their better antifouling properties, but zwitterionic polymers have poor mechanical properties, strong water absorption, and their homopolymers should not be used directly. To solve these problems, a reversible-addition fragmentation chain transfer (RAFT) polymerization process was used to prepare copolymers comprised of zwitterionic side chains that were attached to an ITO glass substrate using spin-casting. The presence of 4-vinylpyridine (4VP) and zwitterion chains on these polymer-coated ITO surfaces was confirmed using 1H NMR, FTIR, and GPC analyses, with successful surface functionalization confirmed using water contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) studies. Changes in water contact angles and C/O ratios (XPS) analysis demonstrated that the functionalization of these polymers with β-propiolactone resulted in hydrophilic mixed 4VP/zwitterionic polymers. Protein adsorption and cell attachment assays were used to optimize the ratio of the zwitterionic component to maximize the antifouling properties of the polymer brush surface. This work demonstrated that the antifouling surface coatings could be readily prepared using a “P4VP-modified” method, that is, the functionality of P4VP to modify the prepared zwitterionic polymer. We believe these materials are likely to be useful for the preparation of biomaterials for biosensing and diagnostic applications.


2014 ◽  
Vol 1061-1062 ◽  
pp. 170-174
Author(s):  
Jian Li

The effects of surface treatment of a carbon fiber (CF) by Polyethylene-polyamine (PEPA) on the interfacial adhesion behavior and morphology of polypropylene/polystyrene (PP/PS) matrix blends filled CF composites were investigated. Effects of surface treated a commercial CF on mechanical properties are studied. Contact angle was measured to examine the changes in wettability of the carbon fiber. The chemical and morphological changes were characterized by using X-ray photoelectron spectroscopy (XPS). PP/PS/CF composites were fabricated with and without PEPA treatment, and their interlaminar fracture toughnesses were compared. The results showed that the interlaminar shear strength (ILSS) of composites has been greatly improved filled PEPA modification CF. The water contact angle of resin sample decreased 50% after addition of PEPA surface treated CF.


Author(s):  
I-Hsuan Chen ◽  
Jung-Hsien Chang ◽  
Ren-Jie Xie ◽  
Chia-Hui Tseng ◽  
Sheng-Rong Hsieh ◽  
...  

Abstract In this study, the easy-to-operate silver mirror reaction (SMR) was used for metallizing chromatography paper. The SMR-metallized paper was characterized by water contact angle measurements, a surface profiler, X-ray photoelectron spectroscopy, UV-vis spectroscopy, X-ray diffraction, and electrical resistance measurement. The characterization results show that Ag was successfully synthesized on cellulose fibers and was electrically conductive after cyclic bending. Moreover, this SMR-metallized paper was used as electrodes for fabricating a supercapacitor. This SMR-metallized paper could be used for realizing cost-effective flexible electronics applied in on-site biochemical sensing in resource-limited settings.


2017 ◽  
Vol 95 (5) ◽  
pp. 605-611 ◽  
Author(s):  
Lei Wang ◽  
Shaoqing Wen ◽  
Zhanxiong Li

A series of novel amphiphilic ABA-type poly(tridecafluorooctylacrylate)-poly(ethylene glycol)-poly(tridecafluorooctylacrylate) (henceforth referred to as p-TDFA-PEG-p-TDFA) triblock oligomers were successfully synthesized via atom transfer radical polymerization (ATRP) using well-defined Br-PEG-Br as macroinitiator and copper as catalyst. The block oligomers were characterized by Fourier transform infrared (FTIR) spectroscopy and 1H and 19F nuclear magnetic resonances (NMR). Gel permeation chromatography (GPC) showed that the block oligomers have been obtained with narrow molecular weight distributions of 1.22–1.33. X-ray photoelectron spectroscopy (XPS) was carried out to confirm the attachment of p-TDFA-PEG-p-TDFA onto the silicon substrate, together with the chemical compositions of p-TDFA-PEG-p-TDFA. The wetabilities of the oligomer films were measured by water contact angles (CAs). Water CAs of p-TDFA-PEG-p-TDFA film were measured and their morphologies were tested by atomic force microscopy (AFM). The result showed that the CAs of the oligomer films, which possess fluoroalkyl groups assembled on the outer surface, increase after heating due to the migration of fluoroalkyl groups and the resulted microphase separation of the p-TDFA-PEG-p-TDFA.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 687 ◽  
Author(s):  
Chongchong Li ◽  
Ruina Ma ◽  
An Du ◽  
Yongzhe Fan ◽  
Xue Zhao ◽  
...  

Super-hydrophobic film with hierarchical micro/nano structures was prepared by galvanic replacement reaction process on the surface of galvanized steel. The effects of the etching time and copper nitrate concentration on the wetting property of the as-prepared surfaces were studied. Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and electrochemical technique were employed to characterize the surface morphology, chemical composition, and corrosion resistance. The stability and self-cleaning property of the as-fabricated super-hydrophobic film were also evaluated. The super-hydrophobic film can be obtained within 3 min and possesses a water contact angle of 164.3° ± 2°. Potentiodynamic polarization measurements indicated that the super-hydrophobic film greatly improved the corrosion resistance of the galvanized steel in 3.5 wt % NaCl aqueous solution. The highest inhibition efficiency was estimated to be 96.6%. The obtained super-hydrophobic film showed good stability and self-cleaning property.


2021 ◽  
Vol 9 ◽  
Author(s):  
Li Chen ◽  
Gang Wu ◽  
Yin Huang ◽  
Changning Bai ◽  
Yuanlie Yu ◽  
...  

Taking advantage of the strong charge interactions between negatively charged graphene oxide (GO) sheets and positively charged poly(diallyldimethylammonium chloride) (PDDA), self-assembled multilayer films of (GO/PDDA)n were created on hydroxylated silicon substrates by alternating electrostatic adsorption of GO and PDDA. The formation and structure of the films were analyzed by means of water contact angle measurement, thickness measurement, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Meanwhile, tribological behaviors in micro- and macro- scale were investigated by AFM and a ball-on-plate tribometer, respectively. The results showed that (GO/PDDA)n multilayer films exhibited excellent friction-reducing and anti-wear abilities in both micro- and macro-scale, which was ascribed to the special structure in (GO/PDDA)n multilayer films, namely, a well-stacked GO–GO layered structure and an elastic 3D crystal stack in whole. Such a film structure is suitable for design molecular lubricants for MEMS and other microdevices.


2013 ◽  
Vol 690-693 ◽  
pp. 1636-1640 ◽  
Author(s):  
Te Hsing Wu ◽  
Ko Shao Chen ◽  
Lie Hang Shen

In this study, We immobilized hydrogel material onto expanded polytetrafluoroethylene (ePTFE) film and used as an functional biomaterial. The material is a film containing titanium oxide onto polymer sheet. The hydrogel film is hydrophilic, bacterial inactivated and bio-compatible. In order to improve the ePTFE film biocompatibility, the cold plasma or γ-ray technology was used with acetic acid as monomer to deposit onto ePTFE film and then (N-isopropylacrylamide) was grafted onto the surface by radiation photo-grafting. The characteristics of the material surface were evaluated with X-ray photoelectron spectroscopy (XPS), FTIR and water contact angle. It was found that the contact angle of water on the untreated ePTFE significantly decrease from125° to 72° after ePTFE film being treated with acetic acid plasma deposition procedure. Due to the hydrophilicity of poly (N-isopropylacrylamide), so the contact angle of water on the ePTFE-g-NIPAAm almost approached to 0°. This thermal sensitive ePTFE hydrogels can be applied to artificial guiding tube and wound dressing material.


Sign in / Sign up

Export Citation Format

Share Document