scholarly journals Tolerance of Three Quinoa Cultivars (Chenopodium quinoa Willd.) to Salinity and Alkalinity Stress During Germination Stage

Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 287
Author(s):  
Vasile Stoleru ◽  
Cristina Slabu ◽  
Maricel Vitanescu ◽  
Catalina Peres ◽  
Alexandru Cojocaru ◽  
...  

Salinity and alkalinity are two of the main causes for productivity losses in agriculture. Quinoa represents a better alternative for global food products such as rice and wheat flour due to its high nutritional value and abiotic stress tolerance. Three cultivars of quinoa seeds (Titicaca, Puno and Vikinga) originating from Denmark were used in the experiments. The seeds were germinated under the action of three different salts (NaCl, Na2SO4, Na2CO3) at 0–300 mM for five days and the germination rate was calculated. Biometric measurements (radicle and hypocotyls lengths) andbiochemical determinations (proline) were performed in order to quantify the tolerance and the effects of salt and alkali stresses on the three quinoa cultivars. The germination rates showed that all cultivars were affected by the presence of salts, especially at 300 mM. The most sensitive cultivar to salts was Titicaca cultivar which evinced the lowest germination rate, regardless of the salt and the concentration used. On the other hand, Puno and Vikinga cultivars showed the best tolerance to the saline and alkaline stresses. Among the salts used, Na2CO3 had the most detrimental effects on the germination of quinoa seeds inhibiting the germination by ~50% starting with 50 mM. More affected was the growth of hypocotyls in the presence of this salt, being completely inhibited for the seeds of the Puno and Titicaca cultivars. Vikinga cultivar was the only one able to grow hypocotyls at 50 and 100 mM Na2CO3. Also, this cultivar had a high adaptability to NaCl stress when significant differences were observed for the germination rates at 200 and 300 mM as compared to 0 mM NaCl, due to the proline production whose content was significantly greater than that of the untreated seeds. In conclusion, the tolerance of the three quinoa cultivars to saline and alkali stress varied with the salt type, salt concentration and tested cultivar, with the Vikinga and Puno cultivars showing the best potential for growing under saline conditions.

Author(s):  
Eliane Kinsou ◽  
David Montcho ◽  
Séraphin Ahissou Zanklan ◽  
Julien Koffi Kpinkoun ◽  
Françoise Assogba Komlan ◽  
...  

Aims: In this research study, salt resistance level of seven tomato cultivars grown in Benin, namely Akikon, Tounvi; F1 Mongal, Petomech, Padma, TLCV 15 and Thorgal was evaluated at the germination stage. Study Design: The experiment was laid out as a completely randomized design with four replications. Place and Duration of Study: The experiment was carried out in the Laboratory of Plant Physiology and Abiotic Stresses Study of University of Abomey-Calavi, Republic of Benin from May to June, 2017. Methodology: Seeds were submitted to treatment with four NaCl concentrations (0; 30; 60 and 90 mM NaCl) in Petri dishes. Seed germination was checked every day during ten days incubation period. Four replicates of 40 seeds each were used. Results: NaCl reduced seed germination rate in all cultivars from day 2 to day 10 and the germination index proportionately to NaCl concentration. At the end of the 10 days, salt stress reduced the final germination percentages with a significant difference among cultivars: cultivars F1 Mongal followed by Akikon, Thorgal, TLCV15 and Tounvi were less affected in comparison with the two other cultivars. Salt Tolerance Index was significantly variable according to the cultivar with the highest values for cultivars F1 Mongal (1.086), Akikon (1.028), TLCV15 (1.005) and Tounvi (0.989) and the weakest value for cultivar Petomech (0.436). Conclusion: NaCl stress delayed seed germination and reduced the rate of final germination. Salt Tolerance Index was variable among the seven cultivars. Based on this criterion, cultivars F1 Mongal, Akikon, TLCV15 and Tounvi were the most salt-resistant whereas Petomech was the most salt-sensitive at germination stage.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245505
Author(s):  
Xiaofei Chen ◽  
Ruidong Zhang ◽  
Yifan Xing ◽  
Bing Jiang ◽  
Bang Li ◽  
...  

Sorghum [Sorghum bicolor (L.) Moench] seed germination is sensitive to salinity, and seed priming is an effective method for alleviating the negative effects of salt stress on seed germination. However, few studies have compared the effects of different priming agents on sorghum germination under salt stress. In this study, we quantified the effects of priming with distilled water (HP), sodium chloride (NaCl), potassium chloride (KCl), calcium chloride (CaCl2), and polyethylene glycol (PEG) on sorghum seed germination under 150 mM NaCl stress. The germination potential, germination rate, germination index, vigor index, root length, shoot length, root fresh weight, shoot fresh weight, root dry weight, and shoot dry weight were significantly reduced by salt stress. Different priming treatments alleviated the germination inhibition caused by salt stress to varying degrees, and 50 mM CaCl2 was the most effective treatment. In addition, the mitigation effect of priming was stronger on root traits than on shoot traits. Mitigation efficacy was closely related to both the type of agent and the concentration of the solution. Principal component analysis showed that all concentrations of CaCl2 had higher scores and were clearly distinguished from other treatments based on their positive effects on all germination traits. The effects of the other agents varied with concentration. The priming treatments were divided into three categories based on their priming efficacy, and the 50, 100, and 150 mM CaCl2 treatments were placed in the first category. The 150 mM KCl, 10% PEG, HP, 150 mM NaCl, 30% PEG, and 50 mM KCl treatments were placed in the second category, and the 100 mM NaCl, 100 mM KCl, 20% PEG, and 50 mM NaCl treatments were least effective and were placed in the third category. Choosing appropriate priming agents and methods for future research and applications can ensure that crop seeds germinate healthily under saline conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenlu Li ◽  
Yixue Wang ◽  
Runzhi Li ◽  
Xiaoping Chang ◽  
Xiangyang Yuan ◽  
...  

Stress association proteins (SAPs) are A20/AN1 zinc-finger domain proteins, which play important roles in plant adaptation to abiotic stress and plant development. The functions of SAPs in some plants were reported, but little is known about it in wheat (Triticum aestivum L.). In this study, we characterized a novel 2AN1-type stress association protein gene TaSAP7-A, which was mapped to chromosome 5A in wheat. Subcellular localization indicated that TaSAP7-A was distributed in the nucleus and cytoplasm. Unlike previously known A20/AN1-type SAP genes, TaSAP7-A was negatively regulated to abiotic stress tolerance. Overexpressing TaSAP7-A Arabidopsis lines were hypersensitive to ABA, osmotic and salt stress at germination stage and post-germination stage. Overexpression of TaSAP7-A Arabidopsis plants accelerated the detached leaves’ chlorophyll degradation. Association analysis of TaSAP7-A haplotypes and agronomic traits showed that Hap-5A-2 was significantly associated with higher chlorophyll content at jointing stage and grain-filling stage. These results jointly revealed that TaSAP7-A is related to the chlorophyll content in the leaves of Arabidopsis and wheat. Both in vivo and in vitro experiments demonstrated that TaSAP7-A interacted with TaS10B, which was the component of regulatory subunit in 26S proteasome. In general, TaSAP7-A was a regulator of chlorophyll content, and favorable haplotypes should be helpful for improving plant chlorophyll content and grain yield of wheat.


2020 ◽  
Vol 21 (3) ◽  
pp. 1165
Author(s):  
Jiayu Luan ◽  
Jingxiang Dong ◽  
Xin Song ◽  
Jing Jiang ◽  
Huiyu Li

Salt stress inhibits normal plant growth and development by disrupting cellular water absorption and metabolism. Therefore, understanding plant salt tolerance mechanisms should provide a theoretical basis for developing salt-resistant varieties. Here, we cloned ThTrx5 from Tamarix hispida, a salt-resistant woody shrub, and generated ThTrx5-overexpressing transgenic Arabidopsis thaliana lines. Under NaCl stress, the germination rate of overexpressing ThTrx5 lines was significantly increased relative to that of the nontransgenic line; under salt stress, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione levels and root length and fresh weight values of transgenic ThTrx5 plants were significantly greater than corresponding values for wild-type plants. Moreover, with regard to the transcriptome, comparison of differential gene expression of transgenic versus nontransgenic lines at 0 h and 3 h of salt stress exposure revealed 500 and 194 differentially expressed genes (DEGs), respectively, that were mainly functionally linked to catalytic activity and binding process. Pull-down experiments showed that ThTrx bound 2-Cys peroxiredoxin BAS1-like protein that influences stress response-associated redox, hormone signal transduction, and transcription factor functions. Therefore, this work provides important insights into ThTrx5 mechanisms that promote salt tolerance in plants.


2012 ◽  
Vol 60 (4) ◽  
pp. 345-355 ◽  
Author(s):  
M. Jamil ◽  
M. Ashraf ◽  
E. Rha

Salinity reduces plant growth and yield by affecting morphological and physiological processes. To alleviate the harmful effects of salt stress various approaches involving plant hormones are used. In this study several parameters involving the measurement of cell membrane injury were used to observe whether stress tolerance could be enhanced in Chinese cabbage (B. oleracea capitata L. Chinensis group) by soaking the seeds for 10 h in distilled water (control), or in 100, 150 or 200 mg l−1 gibberellic acid (GA3). The NaCl concentrations were 0 (control), 50, 100 and 150 mM. Seed treated with GA3 showed increased water uptake and decreased electrolyte leakage as compared to that of distilled water-primed seeds even 24 h after soaking under control conditions. Seed priming with GA3 increased the final germination and the germination rate (1/t50, where t50 is the time to 50% germination) under salt stress conditions. Seed priming also alleviated the harmful effect of salt stress on cabbage in terms of fresh and dry weights. Leaf area was higher in plants raised from seeds primed with the higher GA3 concentrations as compared with those raised from seeds treated with distilled water under control conditions (without NaCl) or at 50 mM NaCl stress. The chlorophyll content increased with the NaCl concentration, especially in plants grown from seeds primed with GA3. Plants grown from GA3-primed seeds also suffered lower cellular injury both under control conditions and under NaCl stress.


2017 ◽  
Vol 109 (1) ◽  
pp. 89 ◽  
Author(s):  
Soheil Karimi ◽  
Saeid ESHGHI ◽  
Saeid KARIMI ◽  
Saman HASAN-NEZHADIAN

<p>This study evaluates seed germination and growth of sweet corn under NaCl stress (0, 50, and 100 mM), after exposing the seeds to weak (15 mT) or strong (150 mT) magnetic fields (MF) for different durations (0, 6, 12, and 24 hours). Salinity reduced seed germination and plant growth. MF treatments enhanced rate and percentage of germination and improved plant growth, regardless of salinity. Higher germination rate was obtained by the stronger MF, however, the seedling were more vigorous after priming with 15 mT MF. Proline accumulation was observed in parallel with the loss of plant water content under 100 mM NaCl stress. MF prevented proline accumulation by improving water absorption. Positive correlation between H<sub>2</sub>O<sub>2</sub> accumulation and membrane thermostability (MTI) was found after MF treatments, which revealed that MF primed the plant for salinity by H<sub>2</sub>O<sub>2</sub> signaling. However, over-accumulation of H<sub>2</sub>O<sub>2</sub> after prolonged MF exposure adversely affected MTI under severe salt stress. In conclusion, magnetic priming for 6 hours was suggested for enhancing germination and growth of sweet corn under salt stress.</p>


Author(s):  
Meryem Brakez ◽  
Salma Daoud ◽  
Moulay Chérif Harrouni ◽  
Naima Tachbibi ◽  
Zahra Brakez

2000 ◽  
Vol 18 (No. 3) ◽  
pp. 115-119
Author(s):  
P. Kalač ◽  
J. Moudrý

Literature data on proteins, lipids, starch, minerals, vitamins and saponins contents and composition and their distribution within whole quinoa seeds, hulls, bran and flour are reviewed. An information on effects of quinoa processing on nutritional value and food applications is also given.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Prashanti Patel ◽  
Karuna Yadav ◽  
Ashish Kumar Srivastava ◽  
Penna Suprasanna ◽  
Thumballi Ramabhatta Ganapathi

Abstract Plant micro RNAs (miRNAs) control growth, development and stress tolerance but are comparatively unexplored in banana, whose cultivation is threatened by abiotic stress and nutrient deficiencies. In this study, a native Musa-miR397 precursor harboring 11 copper-responsive GTAC motifs in its promoter element was identified from banana genome. Musa-miR397 was significantly upregulated (8–10) fold in banana roots and leaves under copper deficiency, correlating with expression of root copper deficiency marker genes such as Musa-COPT and Musa-FRO2. Correspondingly, target laccases were significantly downregulated (>−2 fold), indicating miRNA-mediated silencing for Cu salvaging. No significant expression changes in the miR397-laccase module were observed under iron stress. Musa-miR397 was also significantly upregulated (>2 fold) under ABA, MV and heat treatments but downregulated under NaCl stress, indicating universal stress-responsiveness. Further, Musa-miR397 overexpression in banana significantly increased plant growth by 2–3 fold compared with wild-type but did not compromise tolerance towards Cu deficiency and NaCl stress. RNA-seq of transgenic and wild type plants revealed modulation in expression of 71 genes related to diverse aspects of growth and development, collectively promoting enhanced biomass. Summing up, our results not only portray Musa-miR397 as a candidate for enhancing plant biomass but also highlight it at the crossroads of growth-defense trade-offs.


Author(s):  
Rong Li ◽  
Dandan Min ◽  
Lijun Chen ◽  
Chunyang Chen ◽  
Xiaowen Hu

This study determined the effects of priming on germination in response to temperature, water potential and NaCl. Thermal and hydrotime models were utilized to evaluate changes in parameters of the model after priming. Priming reduced the amount of thermal time in both cultivars, but slightly increased the base temperature for germination from 1.0 to 3.5°C in “Longdong”. Priming significantly increased germination rate at high water potential but had no effect at low water potential. Further, priming reduced the hydrotime constant but made the median base water potential value slightly more positive in both cultivars. Thus, priming increased germination rate in water but decrease it under severe water stress. Germination rate was significantly increased in both cultivars under salinity (NaCl) stress. Moreover, priming improved seedling growth in response to temperature, water and salinity stress in both cultivars.


Sign in / Sign up

Export Citation Format

Share Document