scholarly journals Body Temperature Responses During Phases of Work in Human Remains Detection Dogs Undergoing a Simulated Deployment

Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 673
Author(s):  
Janice Baker ◽  
Mallory DeChant ◽  
Eileen Jenkins ◽  
George Moore ◽  
Kathleen Kelsey ◽  
...  

Body temperature responses were recorded during phases of work (waiting-to-work in close proximity to search site, active work in a search site, and post-work recovery crated in vehicle) in human remains detection dogs during search training. State or federally certified human remains detection dogs (n = 8) completed eight iterations of searching across multiple novel search environments to detect numerous scent sources including partial and complete, buried, hidden, or fully visible human remains. Internal temperature (Tgi) of the body was measured continuously using an ingestible thermistor in the gastrointestinal tract. Mean total phase times were: waiting-to-work: 9.17 min (±2.27); active work: 8:58 min (±2:49); and post-work recovery: 24:04 min (±10.59). Tgi was impacted by phase of work (p < 0.001) with a small increase during active work, with mean peak temperature 39.4 °C (±0.34 °C) during that period. Tgi continued to increase for a mean of 6:37 (±6:04) min into the post-work recovery phase in the handler’s vehicle with a mean peak Tgi of 39.66 °C (±0.41 °C). No significant increase in temperature was measured during the waiting-to-work phase, suggesting behaviors typical of anticipation of work did not appear to contribute to overall body temperature increase during the waiting-to-work recovery cycle. Continued increase of gastrointestinal body temperature several minutes after cessation of exercise indicates that risk of heat injury does not immediately stop when the dog stops exercising, although none of the dogs in this study reached clinically concerning body temperatures or displayed any behavioral signs suggestive of pending heat injury. More work is needed to better understand the impact of vehicle crating on post-work recovery temperatures in dogs.

Author(s):  
Janice Baker ◽  
Mallory DeChant ◽  
Eileen Jenkins ◽  
George Moore ◽  
Kathleen Kelsey ◽  
...  

Body temperature responses were recorded during phases of work (waiting to work in close proximity to search site, active work in a search site, and post-work recovery crated in vehicle) in human remains detection dogs during search training. State or federally certified human remains detection dogs (n = 8) completed eight iterations of searching, rotating through six different types of search environments to detect numerous scent sources including partial and complete, buried, hidden, or fully visible human remains. Internal temperature (Tgi) of the body was measured continuously using an ingestible thermistor in the gastrointestinal tract. Mean total phase times were: waiting to work: 9.17 minutes (&plusmn; 2.27); active work: 8:58 minutes (&plusmn; 2:49); and post work recovery: 24:04 minutes (&plusmn; 10.59). Tgi was impacted by phase of work (P &lt; 0.001) with a small increase during active work, with mean peak temperature 39.4 &deg;C (&plusmn; 0.34 &ordm;C) during that period. Tgi continued to increase for a mean of 7:37 (&plusmn; 6:04) minutes into the post-work recovery phase in the handler&rsquo;s vehicle with a mean peak Tgi of 39.66 &deg;C (&plusmn; 0.41 &ordm;C). No significant increase in temperature was measured during the waiting to work phase, suggesting anticipation of work did not appear to contribute to overall body temperature increase during the waiting to work recovery cycle. Continued increase of gastrointestinal body temperature several minutes after cessation of exercise indicates that risk of heat injury does not immediately stop when the dog stops exercising, although none of the dogs in this study reached clinically concerning body temperatures or displayed any behavioral signs suggestive of pending heat injury. More work is needed to better understand the impact of vehicle crating on post-work recovery temperatures in dogs.


2020 ◽  
Vol 11 (5) ◽  
pp. 489-509
Author(s):  
R. Cheng ◽  
H. Liang ◽  
Y. Zhang ◽  
J. Guo ◽  
Z. Miao ◽  
...  

This study aimed to determine the impact of Lactobacillus plantarum PC170 concurrent with antibiotic treatment and/or during the recovery phase after antibiotic treatment on the body weight, faecal bacterial composition, short-chain fatty acids (SCFAs) concentration, and splenic cytokine mRNA expression of mice. Orally administrated ceftriaxone quantitatively and significantly decreased body weight, faecal total bacteria, Akkermansia muciniphila, and Lactobacillus plantarum, and faecal SCFAs concentration. Ceftriaxone treatment also dramatically altered the faecal microbiota with an increased Chao1 index, decreased species diversities and Bacteroidetes, and more Firmicutes and Proteobacteria. After ceftriaxone intervention, these changes all gradually started to recover. However, faecal microbiota diversities were still totally different from control by significantly increased α- and β-diversities. Bacteroidetes all flourished and became dominant during the recovery process. However, mice treated with PC170 both in parallel with and after ceftriaxone treatment encouraged more Bacteroidetes, Verrucomicrobia, and Actinobacteria, and the diversity by which to make faecal microbiota was very much closer to control. Furthermore, the expression of splenic pro-inflammatory cytokine tumour necrosis factor-α mRNA in mice supplemented with PC170 during the recovery phase was significantly lower than natural recovery. These results indicated that antibiotics, such as ceftriaxone, even with short-term intervention, could dramatically damage the structure of gut microbiota and their abilities to produce SCFAs with loss of body weight. Although such damages could be partly recovered with the cessation of antibiotics, the implication of antibiotics to gut microbiota might remain even after antibiotic treatment. The selected strain PC170 might be a potential probiotic because of its contributions in helping the host animal to remodel or stabilise its gut microbiome and enhancing the anti-inflammatory response as protection from the side effects of antibiotic therapy when it was administered in parallel with and after antibiotic treatment.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 192-193
Author(s):  
Sheyenne M Augenstein ◽  
Meredith A Harrison ◽  
Sarah C Klopatek ◽  
James W Oltjen

Abstract Heat stress continues to be a challenge for feedlot producers, forcing physiological adaptations in beef cattle that can have a negative impact on gain and carcass quality. Feedlots may want to incorporate systems that aid in mitigating heat stress, including sprinkler systems, which are commonly found on dairies. The objective of this study was to determine the impact of sprinkler systems on the body temperature of growing feedlot steers applied at three different temperature thresholds. Thirty-two Angus-cross beef steers (298 ± 15 SD days of age) were randomly assigned to 8 pens. Treatments were assigned to pens according to location to avoid drainage issues, with one replicate located on the eastern side of the feedlot and the other replicate located on the western side. Treatments including no sprinklers (C), high temperature threshold sprinklers (HT), moderate temperature threshold sprinklers (MT) or low temperature threshold sprinklers (LT). Sprinklers (flow rate: 5.11 L/min) were activated at 33°C (HT), 28°C (MT), and 23°C (LT) for five minutes at corresponding temperatures every thirty minutes for 57 days. Rectal temperature of steers in their pens was measured in the morning (0800 h), afternoon (1500 h), and evening (1900 h) three days each week (Monday, Wednesday, Friday) for a total of 19 experimental days. Weather measurements, including ambient temperature, windspeed, humidity and solar radiation were recorded at each measurement time along with the maximum values for each day. The change in body temperature (ΔBT) between the morning and afternoon was affected by ambient temperature (P &lt; 0.01); MT (P = 0.02) and LT (P = 0.02) – different than C. There was no significant difference between sprinkler treatments and the control group (P &gt; 0.05). Day affected (ΔBT) between the morning and afternoon (P &lt; 0.05) and the afternoon and evening (P &lt; 0.05). When averaged by day, the control group was significantly higher than MT (P = 0.04) between the morning and afternoon. The control group was also significantly higher than LT between the morning and afternoon (P = 0.03) and the afternoon and evening (P &lt; 0.01). The change in steer body temperature between afternoon and morning was affected by ambient temperature, and averaged across days, lowering the temperature threshold for sprinkling decreased in the afternoon and evening body temperature increase in steers.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2393-2393
Author(s):  
Yusuke Torikoshi ◽  
Asumi Yokota ◽  
Naoka Kamio ◽  
Atsushi Sato ◽  
Tsukimi Shouji ◽  
...  

Abstract Accumulating evidence has suggested that low body temperature is associated with the risk of infection. Unintentional drops in the body temperature known as "accidental hypothermia" are occasionally accompanied with infections. Patients under therapeutic hypothermia for post-cardiac arrest care are also susceptible to infections. In addition, secondary hypothermia caused by severe sepsis is significantly associated with higher mortality. These observations suggest the negative impact of hypothermia on host defense. Neutrophils are continuously produced in the bone marrow (BM) and supplied to the peripheral blood (PB) or tissues, where they fight against microorganisms. In addition to the neutrophil functions, sufficient supply of neutrophils is a critical determinant of host defense. However, little is known about the impact of hypothermia on granulopoiesis, the process of neutrophil production in the BM. In this study, we investigated the changes in granulopoiesis under hypothermic conditions. We first analyzed the neutrophils in the PB of mice exposed to low environmental temperature (4 °C). Under this condition, rectal temperature of the mice significantly declined from 36.7±0.4 °C to 35.5±0.4 °C. After 72-hour exposure to the low environmental temperature, PB neutrophil counts were significantly decreased. In order to understand the reason for the decrease, we analyzed their BMs by flow cytometry. Previously we developed a unique strategy to divide cells undergoing granulopoiesis into 5 subpopulations based on the expression of c-kit and Ly6G, which reflect successive differentiation/maturation from #1 (c-kithi Ly6G-) to #5 (c-kit- Ly6Ghi) (Satake S and Hirai H et al. J Immunol, 2012). In BM cells of the mice exposed to the low environmental temperature, a significant decrease in mature neutrophils (#5) and a significant increase in cellular intermediates (#3 and #4) were observed, while total BM cell numbers were unchanged. In order to clarify whether these changes were cell-intrinsic or -extrinsic, total BM cells were cultured in vitro at either 35 °C or 37 °C in the presence of G-CSF. Flow cytometric analysis of these cultured BM cells at 72 hours revealed the increase in the intermediates (#2 to #4) and a decrease in the mature subpopulation (#5), suggesting that these alterations were cell-intrinsic phenomena. When neutrophil precursors (#1 or #2) were purified by cell sorter and subjected to in vitro culture at 35 °C for 48 hours, the number of resultant mature neutrophils (#5) were significantly less than those induced at 37 °C. These results clearly indicate that hypothermia delayed neutrophil differentiation/maturation. Interestingly, mice with sepsis induced by cecal ligation and puncture (CLP) accompanied with lower body temperature revealed significantly fewer PB granulocytes and shorter survival when compared to those mice which maintained normal body temperature after CLP. In order to understand the molecular mechanisms underlying the differentiation/maturation delay induced by hypothermia, we performed RNA sequencing of purified neutrophil precursors (#2) after 24-hour culture either at 35 °C or 37 °C. Interestingly, we found alterations in amino acid metabolic pathways and target genes of C/EBP, which is the transcription factor family required for granulopoiesis and cellular metabolism. Collectively, these results indicate hypothermia causes neutropenia through delayed neutrophil differentiation/maturation. We are currently analyzing metabolic changes to understand more precise molecular mechanisms by which hypothermia regulates granulopoiesis. This study will facilitate the understanding of host defense at low body temperature, and shed novel insight into the management of hypothermia in patients. Disclosures Kashiwagi: Takara Bio Inc.: Employment. Hirai:Kyowa Hakko Kirin: Research Funding; Novartis Pharma: Research Funding.


2021 ◽  
Vol 100 (3) ◽  
pp. 229-233
Author(s):  
Olga V. Burmistrova ◽  
Sergey Yu. Perov ◽  
Tatyana A. Konshina

Introduction. The article presents results of the study of the impact of the personal protective equipment EP-4 (0) in various assembly (overalls, jacket and trousers, jacket and semi-overall) from power frequency electric field and electrical shock on the thermal state of workers in a heating environment at air temperature 34.8 ○C and relative humidity 48%. Materials and methods. The study involved three men aged 35.3±4.6 years. They did the physical exercise for 40 minutes, had comfortable relaxation for 30 minutes after work. Recorded indices included skin temperature and moisture sensation score on 11 parts of the body, body temperature in the ear canal, heart rate, clothes temperature, heat sensation score, moisture loss, moisture evaporation efficiency. Results. Overalls using had the highest values of heat content, moisture score, heart rate changes, and body temperature increment. Heat content index in the body reached maximum permissible value using overalls earlier than other configurations. Conclusion. The research data showed overalls have the most significant impact on the human thermal state, jacket and trousers have the least impact, jacket and semi-overall take an intermediate place. The configuration including jacket and trousers, jacket and semi-overall under specific operating conditions is the most optimal. Such PPE assembly can be recommended for use in the open area in the summer season at an air temperature of 35 ○C and above, subject to protective requirements.


2018 ◽  
Vol 1 (2) ◽  
pp. 52
Author(s):  
Ria Dila Syahfitri ◽  
Setia Budi

Hypertermi is a condition when an individual experiences or risks experiencing a continuous increase in body temperature of more than 37.8 � C (100 � F) orally or 38.9 � C (101 � F) per rectal due to external factors. Hypertermi is the onset of symptoms in a disease, which begins with an increase in body temperature in the patient, and the usual initial action is to do a warm compress because warm compresses can lower the body temperature of patients with hyperthermia. Knowledge is the result of knowing that happens after someone observes a particular object, while attitude is a feeling of support or partiality or a feeling of not supporting or not favoring the object. Nurses who provide nursing care should have knowledge, and a good attitude in lowering body temperature. The impact of a lack of knowledge, and the attitude of nurses will result in an optimal decrease in heat in patients. The purpose of this study was to determine the description of nurses' knowledge and attitudes towards the action of warm compresses in hypetermic patients in the Aster Childhood Disease Room at TK.II Hospital Dr.AK. Gani Palembang. The design of this study is quantitative descriptively, while the number of samples is 19 people. Samples taken using nonprobability sampling technique with accidental sampling method, the data used is primary data using a questionnaire, the respondents studied were nurses in the Aster Room, the time of the study during August 2017. The results obtained that the level of good knowledge is 73 , 7% (14 people), and nurses who have positive attitudes as many as 16 people (84.2%). The advice that can be given is to further improve the knowledge and attitudes of nurses about the action of warm compresses. Keyword : Knowledge, Attitude, Hypertermi, Warm Compress


2020 ◽  
Vol 21 (9) ◽  
pp. 3143 ◽  
Author(s):  
Keun-Yeong Jeong

Capsaicin is the active component of chili peppers and is a hydrophobic, colorless, odorless, and crystalline to waxy compound. The transient receptor potential vanilloid 1 (TRPV1) is the capsaicin receptor channels that are involved in a variety of functions like transduction and transmission of the physiological stimulus. Subcutaneous injection of capsaicin to a newborn rat leads to involuntary lifelong TRPV1 desensitization. Various physiological changes including sensory and homeostatic actions in the body associated with neonatal capsaicin treatment are induced by direct TRPV1 channel targeting. Interesting changes include unique phenomena such as the reduction in pain perception, abnormal body temperature, increase in infection, infectious or neuropathological itching, and irregular circadian core body temperature rhythm. These symptoms are associated with relatively higher fever or loss of sensory c-fiber related to TRPV1 desensitization. The aforementioned outcomes not only provide a warning about the risk of capsaicin exposure in newborns but also indicate the possible occurrence of relatively rare diseases that are difficult to diagnose. Therefore, Therefore, the present review aims to summarize the unique phenomena caused by systemic capsaicin administration in neonatal rats.


2018 ◽  
Vol 314 (1) ◽  
pp. R43-R48 ◽  
Author(s):  
Abolhassan Behrouzvaziri ◽  
Maria V. Zaretskaia ◽  
Daniel E. Rusyniak ◽  
Dmitry V. Zaretsky ◽  
Yaroslav I. Molkov

Vital parameters of living organisms exhibit circadian rhythmicity. Although rats are nocturnal animals, most of the studies involving rats are performed during the day. The objective of this study was to examine the circadian variability of the body temperature responses to methamphetamine. Body temperature was recorded in male Sprague-Dawley rats that received intraperitoneal injections of methamphetamine (Meth, 1 or 5 mg/kg) or saline at 10 AM or at 10 PM. The baseline body temperature at night was 0.8°C higher than during the day. Both during the day and at night, 1 mg/kg of Meth induced monophasic hyperthermia. However, the maximal temperature increase at night was 50% smaller than during the daytime. Injection of 5 mg/kg of Meth during the daytime caused a delayed hyperthermic response. In contrast, the same dose at night produced responses with a tendency toward a decrease of body temperature. Using mathematical modeling, we previously showed that the complex dose dependence of the daytime temperature responses to Meth results from an interplay between inhibitory and excitatory drives. In this study, using our model, we explain the suppression of the hyperthermia in response to Meth at night. First, we found that the baseline activity of the excitatory drive is greater at night. It appears partially saturated and thus is additionally activated by Meth to a lesser extent. Therefore, the excitatory component causes less hyperthermia or becomes overpowered by the inhibitory drive in response to the higher dose. Second, at night the injection of Meth results in reduction of the equilibrium body temperature, leading to gradual cooling counteracting hyperthermia.


2020 ◽  
Author(s):  
Meixia Du ◽  
Jie Zhao ◽  
Xiaochun Yin ◽  
Nadi Zhang ◽  
Guisen Zheng

Background: Assessing the impact of vital signs (blood pressure, body temperature, heart rate, respiratory rate, and oxygen saturation) on the death of patients with new coronavirus pneumonia would provide a simple and convenient method for the monitoring of subsequent illness, and therefore, in some degree reduce treatment costs and increase the cure rate clinically. Methods: Six databases were retrieved. The software R 3.6.2 was used for meta-analysis of the included literature. Results: 12 studies were included, which comprise 8996 patients affected with COVID-19 infection. The meta-analysis study found that blood pressure (MAP, SBP and DBP), heart rate, respiration rate and SpO2 are the risk factors for disease progression in patients with COVID-19. Among them, the increase in MAP and the decrease in SpO2 have the greatest impact on the death of patients with COVID-19 [MAP: MD = 5.66, 95% CI (0.34, 10.98), SpO2: MD = -5.87, 95% CI (-9.17, -2.57), P = 0.0005]. However, comparing the body temperature of the death group and the survival group found that the body temperature was not statistically significant between the two groups [body temperature: MD = 0.21, 95% CI (-0.01, 0.43), P = 0.0661]. Conclusion: The increase in MAP, heart rate and respiratory rate, as well as the decrease in SBP, DBP and SpO2 are all independent risk factors for death in patients with COVID-19. These factors are simple and easy to monitor, and individualized treatment can be given to patients in time, reducing the mortality rate and improving treatment efficiency.


1958 ◽  
Vol 195 (3) ◽  
pp. 751-754 ◽  
Author(s):  
Roger A. Hoffman

The temperature responses of the pigeon to serotonin, reserpine, chlorpromazine and LSD-25 were investigated. It was demonstrated that a rapid hypothermia and depre sioa follow the administration of all compounds except chlorpromazine. Serotonin, reserpine and chlorpromazine were shown to have certain prophylactic and therapeutic value on the LSD-25-induced hypothermia. The data indicate that a mutual antagonism exists in the interaction of these compounds. It is suggested that the mechanism of action of these drugs is quite complex, leading to mixed reactions, depending perhaps on what measurement is being considered.


Sign in / Sign up

Export Citation Format

Share Document