scholarly journals Exploring the Ruminal Microbial Community Associated with Fat Deposition in Lambs

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3584
Author(s):  
Yukun Zhang ◽  
Xiaoxue Zhang ◽  
Fadi Li ◽  
Chong Li ◽  
Deyin Zhang ◽  
...  

Microbial communities of the sheep rumen have been studied extensively; however, their involvement in the regulation of fat deposition is unknown. Herein, we aimed to identify the correlations among fat deposition-related phenotypes and the effect of microbiota on changes in body fat accumulation. The rumen microbiota of 141 lambs was profiled by 16S ribosomal RNA sequencing, and the volatile fatty acids’ (VFAs’) concentrations were quantified by gas chromatography. Subsequently, the animals were grouped according to body mass index (BMI) to compare the microbiota of the rumen among the sheep with different fat deposition levels. Results further revealed differences in terms of the species abundance, diversity, and microbial composition between sheep with different fat deposition levels. Linear discriminant analysis (LDA) Effect Size (LEfSe) analysis and Random Forest (RF) regression analysis identified changes in 29 ruminal bacteria, which may be the main driver for different fat deposition.

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4712
Author(s):  
Dawid Nosek ◽  
Agnieszka Cydzik-Kwiatkowska

Development of economical and environment-friendly Microbial Fuel Cells (MFCs) technology should be associated with waste management. However, current knowledge regarding microbiological bases of electricity production from complex waste substrates is insufficient. In the following study, microbial composition and electricity generation were investigated in MFCs powered with waste volatile fatty acids (VFAs) from anaerobic digestion of primary sludge. Two anode sizes were tested, resulting in organic loading rates (OLRs) of 69.12 and 36.21 mg chemical oxygen demand (COD)/(g MLSS∙d) in MFC1 and MFC2, respectively. Time of MFC operation affected the microbial structure and the use of waste VFAs promoted microbial diversity. High abundance of Deftia sp. and Methanobacterium sp. characterized start-up period in MFCs. During stable operation, higher OLR in MFC1 favored growth of exoelectrogens from Rhodopseudomonas sp. (13.2%) resulting in a higher and more stable electricity production in comparison with MFC2. At a lower OLR in MFC2, the percentage of exoelectrogens in biomass decreased, while the abundance of genera Leucobacter, Frigoribacterium and Phenylobacterium increased. In turn, this efficiently decomposed complex organic substances, favoring high and stable COD removal (over 85%). Independent of the anode size, Clostridium sp. and exoelectrogens belonging to genera Desulfobulbus and Acinetobacter were abundant in MFCs powered with waste VFAs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sabine Yip ◽  
Manijeh Mohammadi Dehcheshmeh ◽  
David J. McLelland ◽  
Wayne S. J. Boardman ◽  
Sugiyono Saputra ◽  
...  

AbstractMacropod progressive periodontal disease (MPPD) is a necrotizing, polymicrobial, inflammatory disease commonly diagnosed in captive macropods. MPPD is characterized by gingivitis associated with dental plaque formation, which progresses to periodontitis and then to osteomyelitis of the mandible or maxilla. However, the underlying microbial causes of this disease remain poorly understood. In this study, we collected 27 oral plaque samples and associated clinical records from 22 captive Macropodidae and Potoroidae individuals that were undergoing clinical examination at Adelaide and Monarto Zoos in South Australia (15 healthy, 7 gingivitis and 5 periodontitis-osteomyelitis samples). The V3-V4 region of the 16S ribosomal RNA gene was sequenced using an Illumina Miseq to explore links between MPPD and oral bacteria in these animals. Compositional differences were detected between the microbiota of periodontitis-osteomyelitis cases compared to healthy samples (p-value with Bonferroni correction < 0.01), as well as gingivitis cases compared to healthy samples (p-value with Bonferroni correction < 0.05) using Permutational Multivariate Analysis of Variance (PERMANOVA). An overabundance of Porphyromonas, Fusobacterium, and Bacteroides taxa was also identified in animals with MPPD compared to healthy individuals using linear discriminant analysis effect size (LEfSe; p =  < 0.05). An increased abundance of Desulfomicrobium also was detected in MPPD samples (LEfSe; p < 0.05), which could potentially reflect differences in disease progression. This is the first microbiota analysis of MPPD in captive macropods, and these results support a polymicrobial pathogenesis of MPPD, suggesting that the microbial interactions underpinning MPPD may be more complex than previously documented.


<em>Abstract.</em>—We describe a methodology for developing species–habitat models using available fish and stream habitat data from New York State, focusing on the Genesee basin. Electrofishing data from the New York Department of Environmental Conservation were standardized and used for model development and testing. Four types of predictive models (multiple linear regression, stepwise multiple linear regression, linear discriminant analysis, and neural network) were developed and compared for 11 fish species. Predictive models used as many as 25 habitat variables and explained 35–91% of observed species abundance variability. Omission rates were generally low, but commission rates varied widely. Neural network models performed best for all species, except for rainbow trout <em>Oncorhynchus mykiss</em>, gizzard shad <em>Dorosoma cepedianum</em>, and brown trout <em>Salmo trutta</em>. Linear discriminant functions generally performed poorly. The species–environment models we constructed performed well and have potential applications to management issues.


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1292 ◽  
Author(s):  
Sihem Dabbou ◽  
Ilario Ferrocino ◽  
Laura Gasco ◽  
Achille Schiavone ◽  
Angela Trocino ◽  
...  

This study aimed to evaluate the in vitro antimicrobial activities of two types of insect fats extracted from black soldier fly larvae (HI, Hermetia illucens L.) and yellow mealworm larvae (TM, Tenebrio molitor L.) and their effects as dietary replacement of soybean oil (S) on cecal fermentation pattern, and fecal and cecal microbiota in rabbits. A total of 120 weaned rabbits were randomly allotted to three dietary treatments (40 rabbits/group) —a control diet (C diet) containing 1.5% of S and two experimental diets (HI diet (HID) and TM diet (TMD)), where S was totally substituted by HI or TM fats during the whole trial that lasted 41 days. Regarding the in vitro antimicrobial activities, HI and TM fats did not show any effects on Salmonella growth. Yersinia enterocolitica showed significantly lower growth when challenged with HI fats than the controls. The insect fat supplementation in rabbit diets increased the contents of the cecal volatile fatty acids when compared to the control group. A metataxonomic approach was adopted to investigate the shift in the microbial composition as a function of the dietary insect fat supplementation. The microbiota did not show a clear separation as a function of the inclusion, even if a specific microbial signature was observed. Indeed, HI and TM fat supplementation enriched the presence of Akkermansia that was found to be correlated with NH3-N concentration. An increase in Ruminococcus, which can improve the immune response of the host, was also observed. This study confirms the potential of HI and TM fats as antibacterial feed ingredients with a positive influence on the rabbit cecal microbiota, thus supporting the possibility of including HI and TM fats in rabbit diets.


1999 ◽  
Vol 69 (2) ◽  
pp. 403-410 ◽  
Author(s):  
H. Archimède ◽  
G. Aumont ◽  
G. Saminadin| ◽  
E. Deprès ◽  
P. Despois ◽  
...  

AbstractEffects of incorporation of urea and saccharose in diets, on intake and digestion by sheep of a 35-day-old pangola (Digitaria decumbens) hay, have been studied according to a 4 × 4 Latin-square design. Sixteen rams were given four diets: hay (C); hay plus urea (U, 23 g/kg hay); hay plus saccharose (S, 60 g/kg hay), hay plus urea and saccharose (SU). Acid-detergent fibre and crude protein (CP) content of the roughage were 395 and 78 g/kg dry matter (DM) respectively. Intake of hay (g DM per kg live weight0.75), supplemented with urea and sugar (42⋅9), was lower (F < 0.05) than with other diets (47.2, s.e. 1.6). The organic matter (OM) total tract and ruminal digestibility of the diet C, S, U and SU were 0.622, 0.590, 0.615 and 0.587 (s.e. 0.007); 0.361, 0.380, 0.378 and 0.345 (s.e. 0.015) respectively. Effective degradation and nylon bag kinetics of DM degradation were higher with U and SU compared with S or C. Few differences were observed between diets for ruminal concentration of volatile fatty acids. The ruminal ammonia concentrations were higher (P < 0.05) for the diets with urea than without urea (78 v. 215 mg/l). The efficiencies of the microbial synthesis (g nitrogen per kg OM fermented in the rumen) were, 23.6, 22.4, 24.9 and 29.3 (s.e. 1.7) for the diets C, U, S and SU respectively.Even though additional urea increased nitrogen availability for ruminal bacteria, urea supplementation did not affect significantly intake or digestion of the pangola hay of medium CP content used in this experiment.


2020 ◽  
Author(s):  
Hanchen Tian ◽  
Yiye Chen ◽  
Ni Zhu ◽  
Yongqing Guo ◽  
Ming Deng ◽  
...  

Abstract This study investigated the effects of substitution of whole corn silage (CS) with Broussonetia papyrifera silage (BPS) in different ratios on the serum indicators, hindgut fermentation parameters (pH, ammoniacal nitrogen, and volatile fatty acids), and fecal bacterial community of Holstein heifers. Sixteen heifers (8-month-old, 220±30 kg) were randomly divided into four treatments according to different BPS substitution ratios of feed basis (0%, 25%, 50%, and 75%). The experiment consisted of a 7-day preliminary feeding period and a 30-day experimental period. On the last day of the trial, the blood samples were collected from caudal vein, and the feces samples were collected from rectum. With the increasing of BPS content, the concentration of malondialdehyde (MDA) and interleukin-1β (IL-1β) in serum decreased (P<0.05), and the immunoglobulin A (IgA) and IL-4 content of serum increased (P<0.05); and the hindgut pH value increased (P<0.05). 16S rDNA sequencing found that the dominant phyla were Firmicutes, Bacteroidetes, and Verrucomicrobia; and the dominant genera were Ruminococcaceae_UCG-005, Ruminococcaceae_UCG-010, and Rikenellaceae_RC9_gut_group. Linear Discriminant Analysis Effect Size (LEfSe) analysis found 12 differential operational taxonomic units (OTUs) which have strong correlation with some serum and hindgut indicators. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) found that BPS have impacts on the pathways, such as carbohydrate transport and metabolism, and promotes amino acid transport and metabolism. To sum up, inclusion of BPS in heifer diets can affect the fecal bacterial community, and further improve serum anti-oxidant and immune indicators in Holstein heifers.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wenchao Ma ◽  
Wentao Zhang ◽  
Liliang Shen ◽  
Ji Liu ◽  
Fuhang Yang ◽  
...  

BackgroundTobacco smoking is a carcinogen for many cancers including bladder cancer. The microbiota is involved in the occurrence, development, and treatment of tumors. We explored the composition of male urinary microbiome and the correlation between tobacco smoking and microbiome in this study.MethodsAlpha diversity, principal component analysis (PCA) and Adonis analysis, linear discriminant analysis (LDA) coupled with effect size measurement, and PICRUSt function predictive analysis were used to compare different microbiome between smokers and non-smokers in men.ResultsThere were 26 qualified samples included in the study. Eleven of them are healthy controls, and the others are from men with bladder cancer. Simpson index and the result of PCA analysis between smokers and non-smokers were not different (P &gt; 0.05) in healthy men. However, the abundance of Bacteroidaceae, Erysipelotrichales, Lachnospiraceae, Bacteroides, and so on in the urinary tract of smokers is much higher than that of non-smokers. Compared to non-smokers, the alpha diversity in smokers was elevated in patients with bladder cancer (P &lt; 0.05). PCA analysis showed a significant difference between smokers and non-smokers (P &lt; 0.001), indicating that tobacco smoking plays a vital role in urinary tract microbial composition.ConclusionThe composition of microbiome in the urinary tract is closely related to tobacco smoking. This phenomenon is more significant in patients with bladder cancer. This indicates tobacco smoking may promote the occurrence and development of bladder cancer by changing urinary tract microbiome.


Sign in / Sign up

Export Citation Format

Share Document