scholarly journals Autoxidation Enhances Anti-Amyloid Potential of Flavone Derivatives

Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1428
Author(s):  
Andrius Sakalauskas ◽  
Mantas Ziaunys ◽  
Ruta Snieckute ◽  
Vytautas Smirnovas

The increasing prevalence of amyloid-related disorders, such as Alzheimer’s or Parkinson’s disease, raises the need for effective anti-amyloid drugs. It has been shown on numerous occasions that flavones, a group of naturally occurring anti-oxidants, can impact the aggregation process of several amyloidogenic proteins and peptides, including amyloid-beta. Due to flavone autoxidation at neutral pH, it is uncertain if the effective inhibitor is the initial molecule or a product of this reaction, as many anti-amyloid assays attempt to mimic physiological conditions. In this work, we examine the aggregation-inhibiting properties of flavones before and after they are oxidized. The oxidation of flavones was monitored by measuring the UV-vis absorbance spectrum change over time. The protein aggregation kinetics were followed by measuring the amyloidophilic dye thioflavin-T (ThT) fluorescence intensity change. Atomic force microscopy was employed to image the aggregates formed with the most prominent inhibitors. We demonstrate that flavones, which undergo autoxidation, have a far greater potency at inhibiting the aggregation of both the disease-related amyloid-beta, as well as a model amyloidogenic protein—insulin. Oxidized 6,2′,3′-trihydroxyflavone was the most potent inhibitor affecting both insulin (7-fold inhibition) and amyloid-beta (2-fold inhibition). We also show that this tendency to autoxidize is related to the positions of the flavone hydroxyl groups.

2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Garima Thakur ◽  
Miodrag Micic ◽  
Yuehai Yang ◽  
Wenzhi Li ◽  
Dania Movia ◽  
...  

Nanoparticles have enormous potential in diagnostic and therapeutic studies. We have demonstrated that the amyloid beta mixed with and conjugated to dihydrolipoic acid- (DHLA) capped CdSe/ZnS quantum dots (QDs) of size approximately 2.5 nm can be used to reduce the fibrillation process. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used as tools for analysis of fibrillation. There is a significant change in morphology of fibrils when amyloidβ(1–42) (Aβ(1–42)) is mixed or conjugated to the QDs. The length and the width of the fibrils vary under modified conditions. Thioflavin T (ThT) fluorescence supports the decrease in fibril formation in presence of DHLA-capped QDs.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 756 ◽  
Author(s):  
Huong Phan ◽  
Kaouthar Samarat ◽  
Yuzuru Takamura ◽  
Auriane Azo-Oussou ◽  
Yasutaka Nakazono ◽  
...  

Some polyphenols, which are common natural compounds in fruits, vegetables, seeds, and oils, have been considered as potent inhibitors of amyloid beta (Aβ) aggregation, one critical pathogenic event in Alzheimer’s disease (AD). However, the mechanisms by which polyphenols affect aggregation are not fully understood. In this study, we aimed to investigate the effect of two classes of polyphenols (flavonoids and stilbenes) on the self-assembly of Aβ_42, in particular, how this relates to structure. We found that the flavonoids gallocatechin gallate (GCG) and theaflavin (TF) could completely inhibit Aβ aggregation, while two stilbenes, resveratrol and its glucoside derivative piceid, could also suppress Aβ aggregation, but to a much lesser extent. Intriguingly, resveratrol accelerated the formation of Aβ fibrils before its decreasing effect on fibrillation was detected. Atomic force microscopy (AFM) images showed a huge mass of long and thin Aβ fibrils formed in the presence of resveratrol. Although the morphology was the same in the presence of piceid, the fibrils were sparse in the presence of picead. In the presence of flavonoids, Aβ morphology was unchanged from prior to incubation (0 h), in agreement with amyloid beta kinetics analysis using thioflavin-T fluorescence assay. The electrochemical data showed a higher ability of GCG and TF to interact with Aβ than resveratrol and piceid, which could be attributed to the presence of more aromatic rings and hydroxyl groups. In addition, the two flavonoids exhibited a similar propensity for Aβ aggregation, despite having some differences in their structure. However, in the case of stilbenes, the addition of a glucoside at C-7 slightly decreased anti-Aβ aggregation property compared to resveratrol. These findings contribute to a better understanding of the essential structural features of polyphenols required for inhibiting Aβ aggregation, and the possible mechanisms for modulating aggregation.


Author(s):  
H. Kinney ◽  
M.L. Occelli ◽  
S.A.C. Gould

For this study we have used a contact mode atomic force microscope (AFM) to study to topography of fluidized cracking catalysts (FCC), before and after contamination with 5% vanadium. We selected the AFM because of its ability to well characterize the surface roughness of materials down to the atomic level. It is believed that the cracking in the FCCs occurs mainly on the catalysts top 10-15 μm suggesting that the surface corrugation could play a key role in the FCCs microactivity properties. To test this hypothesis, we chose vanadium as a contaminate because this metal is capable of irreversibly destroying the FCC crystallinity as well as it microporous structure. In addition, we wanted to examine the extent to which steaming affects the vanadium contaminated FCC. Using the AFM, we measured the surface roughness of FCCs, before and after contamination and after steaming.We obtained our FCC (GRZ-1) from Davison. The FCC is generated so that it contains and estimated 35% rare earth exchaged zeolite Y, 50% kaolin and 15% binder.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


2021 ◽  
Vol 22 (12) ◽  
pp. 6472
Author(s):  
Beata Kaczmarek-Szczepańska ◽  
Marcin Wekwejt ◽  
Olha Mazur ◽  
Lidia Zasada ◽  
Anna Pałubicka ◽  
...  

This paper concerns the physicochemical properties of chitosan/phenolic acid thin films irradiated by ultraviolet radiation with wavelengths between 200 and 290 nm (UVC) light. We investigated the preparation and characterization of thin films based on chitosan (CTS) with tannic (TA), caffeic (CA) and ferulic acid (FA) addition as potential food-packaging materials. Such materials were then exposed to the UVC light (254 nm) for 1 and 2 h to perform the sterilization process. Different properties of thin films before and after irradiation were determined by various methods such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimeter (DSC), mechanical properties and by the surface free energy determination. Moreover, the antimicrobial activity of the films and their potential to reduce the risk of contamination was assessed. The results showed that the phenolic acid improving properties of chitosan-based films, short UVC radiation may be used as sterilization method for those films, and also that the addition of ferulic acid obtains effective antimicrobial activity, which have great benefit for food packing applications.


Author(s):  
Zhou J ◽  
◽  
Dong Y ◽  
Ma Y ◽  
Zhang T ◽  
...  

Graphene Quantum Dots (GQDs) have been prepared by oxidationhydrothermal reaction, using ball-milling graphite as the starting materials. The prepared GQDs are endowed with excellent luminescence properties, with the optimum emission of 320nm. Blue photoluminescent emitted from the GQDs under ultraviolet light. The GQDs are ~3nm in width and 0.5~2 nm in thickness, revealed by high-resolution transmission electron microscopy and atomic force microscopy. In addition, Fourier transform infrared spectrum evidences the existence of carbonyl and hydroxyl groups, meaning GQDs can be dispersed in water easily and used in cellar imaging, and blue area inside L929 cells were clearly observed under the fluorescence microscope. Both low price of raw material and simple prepared method contribute to the high quality GQDs widespread application in future.


2013 ◽  
Vol 28 (2) ◽  
pp. 68-71 ◽  
Author(s):  
Thomas N. Blanton ◽  
Debasis Majumdar

In an effort to study an alternative approach to make graphene from graphene oxide (GO), exposure of GO to high-energy X-ray radiation has been performed. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) have been used to characterize GO before and after irradiation. Results indicate that GO exposed to high-energy radiation is converted to an amorphous carbon phase that is conductive.


2021 ◽  
Vol 63 (9) ◽  
pp. 1437
Author(s):  
А.С. Комолов ◽  
Э.Ф. Лазнева ◽  
Е.В. Жижин ◽  
Э.К. Алиджанов ◽  
Ю.Д. Лантух ◽  
...  

The morphology of organic semiconductor films of perylenetetracarboxylic acid dianhydride (PTCDA) and perylenetetracarboxylic acid dibenzyl-diimide (N, N`-DBPTCDI) formed by thermal vacuum deposition was studied by atomic force microscopy. It was shown that annealing of films at 420 K leads to rearrangement of their structure and crystallization. The optical absorption spectra of the films under study were used to estimate the optical band gap. The temperature dependence of the dark conductivity of PTCDA and N, N-DBPTCDI films before and after annealing (Т = 420 K) was established. The values of the activation energy of charge carrier traps are determined. The computer simulation of the density of localized states in the band gap of the films studied was carried out using the photoconductivity spectra in the constant photocurrent mode. Model photovoltaic cells based on PTCDA / СuPc and N, N-DBPTCDI / СuPc structures were formed. The kinetics of decay of the interfacial photo-voltage of the cells prepared was measured using pulsed light as an excitation source. On the basis of the performed measurements, the charge carrier mobility values in the investigated semiconductor materials were estimated.


2018 ◽  
Vol 12 (01) ◽  
pp. 057-066 ◽  
Author(s):  
Maleeha Nayyer ◽  
Shahreen Zahid ◽  
Syed Hammad Hassan ◽  
Salman Aziz Mian ◽  
Sana Mehmood ◽  
...  

ABSTRACT Objective: The objective of this study was to assess the surface properties (microhardness and wear resistance) of various composites and compomer materials. In addition, the methodologies used for assessing wear resistance were compared. Materials and Methods: This study was conducted using restorative material (Filtek Z250, Filtek Z350, QuiXfil, SureFil SDR, and Dyract XP) to assess wear resistance. A custom-made toothbrush simulator was employed for wear testing. Before and after wear resistance, structural, surface, and physical properties were assessed using various techniques. Results: Structural changes and mass loss were observed after treatment, whereas no significant difference in terms of microhardness was observed. The correlation between atomic force microscopy (AFM) and profilometer and between wear resistance and filler volume was highly significant. The correlation between wear resistance and microhardness were insignificant. Conclusions: The AFM presented higher precision compared to optical profilometers at a nanoscale level, but both methods can be used in tandem for a more detailed and precise roughness analysis.


2007 ◽  
Vol 263 ◽  
pp. 213-218 ◽  
Author(s):  
Monika Losertová ◽  
Karla Čech Barabaszová ◽  
Jaromír Drápala ◽  
Miroslav Kursa

The study of composition and microstructure of welded joints was performed before and after the diffusion annealing at elevated temperatures for different annealing time. The Kirkendall effect in the Ni/Ni3Al diffusion couples was observed by means of different methods, e.g. using light, scanning electron and atomic force microscopies. The study suitably completes and specifies the morphology features of Kirkendall voids at different evolution stages, i.e. at nucleation, growing and coalescence. Kirkendall voids occurred in the region between the Matano and γ/γ´interface planes. The location of the γ/γ´ interface that moved in the direction of Ni3Al phase during the annealing resulted from the Al concentration profile measured by EDAX. The Matano plane location was determined by means of Boltzmann-Matano’s method using concentration profile data. It was observed that the void size was increasing in the direction from the Matano plane to the γ/γ´ interface. The obtained results were completed by surface topography of Kirkendall voids of slightly etched specimens by atomic force microscopy (AFM).


Sign in / Sign up

Export Citation Format

Share Document