scholarly journals Batryticatus Bombyx Protects Dopaminergic Neurons against MPTP-Induced Neurotoxicity by Inhibiting Oxidative Damage

Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 574 ◽  
Author(s):  
Hye-Sun Lim ◽  
Joong-Sun Kim ◽  
Byeong Cheol Moon ◽  
Seung Mok Ryu ◽  
Jun Lee ◽  
...  

Oxidative stress plays an important role in the degeneration of dopaminergic neurons in Parkinson’s disease (PD). Altered redox homeostasis in neurons interferes with several biological processes, ultimately leading to neuronal death. Oxidative damage has been identified as one of the principal mechanisms underlying the progression of PD. Several studies highlight the key role of superoxide radicals in inducing neuronal toxicity. Batryticatus Bombyx (BB), the dried larva of Bombyx mori L. infected by Beauveria bassiana (Bals.) Vuill., has been used in traditional medicine for its various pharmacological effects. In the present study, BB showed a beneficial effect on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity by directly targeting dopaminergic neurons. Treatment with BB improved behavioral impairments, protected dopaminergic neurons, and maintained dopamine levels in PD mouse models. Here, we investigated the protective effects of BB on MPTP-induced PD in mice and explored the underlying mechanisms of action, focusing on oxidative signaling. In MPTP-induced PD, BB promoted recovery from impaired movement, prevented dopamine depletion, and protected against dopaminergic neuronal degradation in the substantia nigra pars compacta (SNpc) or the striatum (ST). Moreover, BB upregulated mediators of antioxidative response such as superoxidase dismutase (SOD), catalase (CAT), glutathione (GSH), Heme oxygenase 1 (HO-1), and NAD(P)H (nicotinamide adenine dinucleotide phosphate) dehydrogenase (NQO1). Thus, treatment with BB reduced the oxidative stress, improved behavioral impairments, and protected against dopamine depletion in MPTP-induced toxicity.

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Hye-Sun Lim ◽  
Joong-Sun Kim ◽  
Byeong Cheol Moon ◽  
Goya Choi ◽  
Seung Mok Ryu ◽  
...  

Parkinson’s disease (PD) is characterized by dopaminergic neuronal loss in the substantia nigra pars compacta (SNPC) and the striatum. Nuclear receptor-related 1 protein (Nurr1) is a nuclear hormone receptor implicated in limiting mitochondrial dysfunction, apoptosis, and inflammation in the central nervous system and protecting dopaminergic neurons and a promising therapeutic target for PD. Cicadidae Periostracum (CP), the cast-off skin of Cryptotympana pustulata Fabricius, has been used in traditional medicine for its many clinical pharmacological effects, including the treatment of psychological symptoms in PD. However, scientific evidence for the use of CP in neurodegenerative diseases, including PD, is lacking. Here, we investigated the protective effects of CP on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- (MPTP-) induced PD in mice and explored the underlying mechanisms of action, focusing on Nurr1. CP increased the expression levels of Nurr1, tyrosine hydroxylase, DOPA decarboxylase, dopamine transporter, and vesicular monoamine transporter 2 via extracellular signal-regulated kinase phosphorylation in differentiated PC12 cells and the mouse SNPC. In MPTP-induced PD, CP promoted recovery from movement impairments. CP prevented dopamine depletion and protected against dopaminergic neuronal degradation via mitochondria-mediated apoptotic proteins such as B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X, cytochrome c, and cleaved caspase-9 and caspase-3 by inhibiting MPTP-induced neuroinflammatory cytokines, inducible nitric oxide synthase, cyclooxygenase 2, and glial/microglial activation. Moreover, CP inhibited lipopolysaccharide-induced neuroinflammatory cytokines and response levels and glial/microglial activation in BV2 microglia and the mouse brain. Our findings suggest that CP might contribute to neuroprotective signaling by regulating neurotrophic factors primarily via Nurr1 signaling, neuroinflammation, and mitochondria-mediated apoptosis.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 479
Author(s):  
Seong Hoon Kim ◽  
Hye-Won Yum ◽  
Seung Hyeon Kim ◽  
Wonki Kim ◽  
Su-Jung Kim ◽  
...  

Taurine chloramine (TauCl) is an endogenous anti-inflammatory substance which is derived from taurine, a semi-essential sulfur-containing β-amino acid found in some foods including meat, fish, eggs and milk. In general, TauCl as well as its parent compound taurine downregulates production of tissue-damaging proinflammatory mediators, such as chemokines and cytokines in many different types of cells. In the present study, we investigated the protective effects of TauCl on experimentally induced colon inflammation. Oral administration of TauCl protected against mouse colitis caused by 2,4,6-trinitrobenzene sulfonic acid (TNBS). TauCl administration attenuated apoptosis in the colonic mucosa of TNBS-treated mice. This was accompanied by reduced expression of an oxidative stress marker, 4-hydroxy-2-nonenal and proinflammatory molecules including tumor necrosis factor-α, interleukin-6 and cyclooxygenase-2 in mouse colon. TauCl also inhibited activation of NFκB and STAT3, two key transcription factors mediating proinflammatory signaling. Notably, the protective effect of TauCl on oxidative stress and inflammation in the colon of TNBS-treated mice was associated with elevated activation of Nrf2 and upregulation of its target genes encoding heme oxygenase-1, NAD(P)H:quinone oxidoreductase, glutamate cysteine ligase catalytic subunit, and glutathione S-transferase. Taken together, these results suggest that TauCl exerts the protective effect against colitis through upregulation of Nrf2-dependent cytoprotective gene expression while blocking the proinflammatory signaling mediated by NFκB and STAT3.


2021 ◽  
Vol 22 (13) ◽  
pp. 6946
Author(s):  
Weishun Tian ◽  
Suyoung Heo ◽  
Dae-Woon Kim ◽  
In-Shik Kim ◽  
Dongchoon Ahn ◽  
...  

Free radical generation and oxidative stress push forward an immense influence on the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. Maclura tricuspidata fruit (MT) contains many biologically active substances, including compounds with antioxidant properties. The current study aimed to investigate the neuroprotective effects of MT fruit on hydrogen peroxide (H2O2)-induced neurotoxicity in SH-SY5Y cells. SH-SY5Y cells were pretreated with MT, and cell damage was induced by H2O2. First, the chemical composition and free radical scavenging properties of MT were analyzed. MT attenuated oxidative stress-induced damage in cells based on the assessment of cell viability. The H2O2-induced toxicity caused by ROS production and lactate dehydrogenase (LDH) release was ameliorated by MT pretreatment. MT also promoted an increase in the expression of genes encoding the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). MT pretreatment was associated with an increase in the expression of neuronal genes downregulated by H2O2. Mechanistically, MT dramatically suppressed H2O2-induced Bcl-2 downregulation, Bax upregulation, apoptotic factor caspase-3 activation, Mitogen-activated protein kinase (MAPK) (JNK, ERK, and p38), and Nuclear factor-κB (NF-κB) activation, thereby preventing H2O2-induced neurotoxicity. These results indicate that MT has protective effects against H2O2-induced oxidative damage in SH-SY5Y cells and can be used to prevent and protect against neurodegeneration.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1800
Author(s):  
Ruijun Feng ◽  
Xiaomin Wang ◽  
Li He ◽  
Shengwang Wang ◽  
Junjie Li ◽  
...  

G6PDH provides intermediate metabolites and reducing power (nicotinamide adenine dinucleotide phosphate, NADPH) for plant metabolism, and plays a pivotal role in the cellular redox homeostasis. In this study, we cloned five G6PDH genes (HvG6PDH1 to HvG6PDH5) from highland barley and characterized their encoded proteins. Functional analysis of HvG6PDHs in E. coli showed that HvG6PDH1 to HvG6PDH5 encode the functional G6PDH proteins. Subcellular localization and phylogenetic analysis indicated that HvG6PDH2 and HvG6PDH5 are localized in the cytoplasm, while HvG6PDH1, HvG6PDH3, and HvG6PDH4 are plastidic isoforms. Analysis of enzymatic activities and gene expression showed that HvG6PDH1 to HvG6PDH4 are involved in responses to salt and drought stresses. The cytosolic HvG6PDH2 is the major isoform against oxidative stress. HvG6PDH5 may be a house-keeping gene. In addition, HvG6PDH1 to HvG6PDH4 and their encoded enzymes responded to jasmonic acid (JA) and abscisic acid (ABA) treatments, implying that JA and ABA are probably critical regulators of HvG6PDHs (except for HvG6PDH5). Reactive oxygen species analysis showed that inhibition of cytosolic and plastidic G6PDH activities leads to increased H2O2 and O2− contents in highland barley under salt and drought stresses. These results suggest that G6PDH can maintain cellular redox homeostasis and that cytosolic HvG6PDH2 is an irreplaceable isoform against oxidative stress in highland barley.


2020 ◽  
Vol 34 ◽  
pp. 205873842095014
Author(s):  
Mamdooh Ghoneum ◽  
Shaymaa Abdulmalek ◽  
Deyu Pan

Introduction: Oxidative stress is a key contributor to aging and age-related diseases. In the present study, we examine the protective effects of PFT, a novel kefir product, against age-associated oxidative stress using aged (10-month-old) mice. Methods: Mice were treated with PFT orally at a daily dose of 2 mg/kg body weight over 6 weeks, and antioxidant status, protein oxidation, and lipid peroxidation were studied in the brain, liver, and blood. Results: PFT supplementation significantly reduced the oxidative stress biomarkers malondialdehyde (MDA) and nitric oxide; reversed the reductions in glutathione (GSH) levels, total antioxidant capacity (TAC), and anti-hydroxyl radical (AHR) content; enhanced the antioxidant enzyme activities of glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD); inhibited the liver enzyme levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT); significantly reduced triglyceride (TG), total cholesterol (TC), and low density lipoprotein (LDL) levels; and significantly elevated high density lipoprotein (HDL) levels. Interestingly, PFT supplementation reversed the oxidative changes associated with aging, thus bringing levels to within the limits of the young control mice in the brain, liver, and blood. We also note that PFT affects the redox homeostasis of young mice and that it is corrected post-treatment with PFT. Conclusion: Our findings show the effectiveness of dietary PFT supplementation in modulating age-associated oxidative stress in mice and motivate further studies of PFT’s effects in reducing age-associated disorders where free radicals and oxidative stress are the major cause.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1159 ◽  
Author(s):  
Zeng Qi ◽  
Zhuo Li ◽  
Xuewa Guan ◽  
Cuizhu Wang ◽  
Fang Wang ◽  
...  

Panax ginseng Meyer cv. Silvatica (PGS), which is also known as “Lin-Xia-Shan-Shen” or “Zi-Hai” in China, is grown in forests and mountains by broadcasting the seeds of ginseng and is harvested at the cultivation age of 15–20 years. In this study, four new dammarane-type triterpenoids, ginsengenin-S1 (1), ginsengenin-S2 (2), ginsenoside-S3 (3), ginsenoside-S4 (4), along with one known compound were isolated from pearl knots of PGS. Ginsengenin-S2 significantly alleviated oxidative damage when A549 cells were exposed to cigarette smoke (CS) extract. In addition, ginsengenin-S2 could inhibit the CS-induced inflammatory reaction in A549 cells. Protective effects of ginsengenin-S2 against CS-mediated oxidative stress and the inflammatory response in A549 cells may involve the Nrf2 and HDAC2 pathways.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5717 ◽  
Author(s):  
Jung-Yeon Kim ◽  
Jaechan Leem ◽  
Kwan-Kyu Park

Sepsis is the major cause of acute kidney injury (AKI) in severely ill patients, but only limited therapeutic options are available. During sepsis, lipopolysaccharide (LPS), an endotoxin derived from bacteria, activates signaling cascades involved in inflammatory responses and tissue injury. Apamin is a component of bee venom and has been shown to exert antioxidative, antiapoptotic, and anti-inflammatory activities. However, the effect of apamin on LPS-induced AKI has not been elucidated. Here, we show that apamin treatment significantly ameliorated renal dysfunction and histological injury, especially tubular injury, in LPS-injected mice. Apamin also suppressed LPS-induced oxidative stress through modulating the expression of nicotinamide adenine dinucleotide phosphate oxidase 4 and heme oxygenase-1. Moreover, tubular cell apoptosis with caspase-3 activation in LPS-injected mice was significantly attenuated by apamin. Apamin also inhibited cytokine production and immune cell accumulation, suppressed toll-like receptor 4 pathway, and downregulated vascular adhesion molecules. Taken together, these results suggest that apamin ameliorates LPS-induced renal injury through inhibiting oxidative stress, apoptosis of tubular epithelial cells, and inflammation. Apamin might be a potential therapeutic option for septic AKI.


RSC Advances ◽  
2017 ◽  
Vol 7 (33) ◽  
pp. 20480-20487 ◽  
Author(s):  
Jichun Zhao ◽  
Fengwei Tian ◽  
Qixiao Zhai ◽  
Ruipeng Yu ◽  
Hao Zhang ◽  
...  

The aim of this study was to investigate the effects of mixed lactic acid bacteria (LAB) against microcystin-LR-exposed hepatotoxicity and oxidative stress in BALB/c mice.


Reproduction ◽  
2018 ◽  
Vol 155 (3) ◽  
pp. 307-319 ◽  
Author(s):  
Yan Cao ◽  
Ming Shen ◽  
Yi Jiang ◽  
Shao-chen Sun ◽  
Honglin Liu

Oxidative stress-induced granulosa cell (GCs) injury is believed to be a common trigger for follicular atresia. Emerging evidence indicates that excessive autophagy occurs in mammalian cells with oxidative damage. N-acetyl-5-methoxytrypamine (melatonin) has been shown to prevent GCs from oxidative injury, although the exact mechanism remains to be elucidated. Here, we first demonstrated that the suppression of autophagy through the JNK/BCL-2/BECN1 signaling is engaged in melatonin-mediated GCs protection against oxidative damage. Melatonin inhibited the loss of GCs viability, formation of GFP-MAP1LC3B puncta, accumulation of MAP1LC3B-II blots, degradation of SQSTM1 and the expression of BECN1, which was correlated with impaired activation of JNK during oxidative stress. On the other hand, blocking of autophagy and/or JNK also reduced the level of H2O2-induced GCs death, but failed to further restore GCs viability in the presence of melatonin. Particularly, the suppression of autophagy provided no additional protective effects when GCs were pretreated with JNK inhibitor and/or melatonin. Importantly, we found that the enhanced interaction between BCL-2 and BECN1 might be a responsive mechanism for autophagy suppression via the melatonin/JNK pathway. Moreover, blocking the downstream antioxidant system of melatonin using specific inhibitors further confirmed a direct role of melatonin/JNK/autophagy axis in preserving GCs survival without scavenging reactive oxygen species (ROS). Taken together, our findings uncover a novel function of melatonin in preventing GCs from oxidative damage by targeting JNK-mediated autophagy, which might contribute to develop therapeutic strategies for patients with ovulation failure-related disorders.


2020 ◽  
Vol 70 (4) ◽  
pp. 618-630 ◽  
Author(s):  
Hong-Kan Zhang ◽  
Yuan Ye ◽  
Kai-Jun Li ◽  
Zhen-ni Zhao ◽  
Jian-Feng He

AbstractOur previous study demonstrated that gypenosides (Gp) exert protective effects on retinal nerve fibers and axons in a mouse model of experimental autoimmune optic neuritis. However, the therapeutic mechanisms remain unclear. Thus, in this study, a model of oxidative damage in retinal ganglion cells (RGCs) was established to investigate the protective effect of Gp, and its possible influence on oxidative stress in RGCs. Treatment of cells with H2O2 induced RGC injury owing to the generation of intracellular reactive oxygen species (ROS). In addition, the activities of antioxidative enzymes decreased and the expression of inflammatory factors increased, resulting in an increase in cellular apoptosis. Gp helped RGCs to become resistant to oxidation damage by directly reducing the amount of ROS in cells and exerting protective effects against H2O2-induced apoptosis. Treatment with Gp also reduced the generation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and increased nuclear respiratory factor 2 (Nrf-2) levels so as to increase the levels of heme oxygenase-1 (HO-1) and glutathione peroxidase 1/2 (Gpx1/2), which can enhance antioxidation in RGCs. In conclusion, our data indicate that neuroprotection by Gp involves its antioxidation and anti-inflammation effects. Gp prevents apoptosis through a mitochondrial apoptotic pathway. This finding might provide novel insights into understanding the mechanism of the neuroprotective effects of gypenosides in the treatment of optic neuritis.


Sign in / Sign up

Export Citation Format

Share Document