scholarly journals Nanomaterials for Skin Delivery of Cosmeceuticals and Pharmaceuticals

2020 ◽  
Vol 10 (5) ◽  
pp. 1594 ◽  
Author(s):  
Eliana B. Souto ◽  
Ana Rita Fernandes ◽  
Carlos Martins-Gomes ◽  
Tiago E. Coutinho ◽  
Alessandra Durazzo ◽  
...  

Skin aging is described as dermatologic changes either naturally occurring over the course of years or as the result of the exposure to environmental factors (e.g., chemical products, pollution, infrared and ultraviolet radiations). The production of collagen and elastin, the main structural proteins responsible for skin strength and elasticity, is reduced during aging, while their role in skin rejuvenation can trigger a wrinkle reversing effect. Elasticity loss, wrinkles, dry skin, and thinning are some of the signs that can be associated with skin aging. To overcome skin aging, many strategies using natural and synthetic ingredients are being developed aiming to reduce the signs of aging and/or to treat age-related skin problems (e.g., spots, hyper- or hypopigmentation). Among the different approaches in tissue regeneration, the use of nanomaterials loaded with cosmeceuticals (e.g., phytochemicals, vitamins, hyaluronic acid, and growth factors) has become an interesting alternative. Based on their bioactivities and using different nanoformulations as efficient delivery systems, several cosmeceutical and pharmaceutical products are now available on the market aiming to mitigate the signs of aged skin. This manuscript discusses the state of the art of nanomaterials commonly used for topical administration of active ingredients formulated in nanopharmaceuticals and nanocosmeceuticals for skin anti-aging.

2021 ◽  
Vol 22 (23) ◽  
pp. 12641
Author(s):  
Erika Csekes ◽  
Lucia Račková

The skin, being the barrier organ of the body, is constitutively exposed to various stimuli impacting its morphology and function. Senescent cells have been found to accumulate with age and may contribute to age-related skin changes and pathologies. Natural polyphenols exert many health benefits, including ameliorative effects on skin aging. By affecting molecular pathways of senescence, polyphenols are able to prevent or delay the senescence formation and, consequently, avoid or ameliorate aging and age-associated pathologies of the skin. This review aims to provide an overview of the current state of knowledge in skin aging and cellular senescence, and to summarize the recent in vitro studies related to the anti-senescent mechanisms of natural polyphenols carried out on keratinocytes, melanocytes and fibroblasts. Aged skin in the context of the COVID-19 pandemic will be also discussed.


2019 ◽  
Vol 16 (10) ◽  
pp. 940-950 ◽  
Author(s):  
Jiandong Yu ◽  
Zhi Chen ◽  
Yan-zhi Yin ◽  
Chaoyuan Tang ◽  
Enying Hu ◽  
...  

Background: In this study, a liposomal gel based on a pH-gradient method was used to increase the skin-layer retention of monocrotaline (MCT) for topical administration. Methods: Using the Box-Behnken design, different formulations were designed to form liposome suspensions with optimal encapsulation efficiency (EE%) and stability factor (KE). In order to keep MCT in liposomes and accumulate in skin slowly and selectively, MCT liposome suspensions were engineered into gels. Results: A pH-gradient method was used to prepare liposome suspensions. The optimal formulation of liposome suspensions (encapsulation efficiency: 83.10 ± 0.21%) was as follows: MCT 12 mg, soybean phosphatidyl choline (sbPC) 200 mg, cholesterol (CH) 41 mg, vitamin E (VE) 5 mg, and citric acid buffer solution (CBS) 4.0 10 mL (pH 7.0). The final formulation of liposomal gels consisted of 32 mL liposome suspensions, 4.76 mL deionized water, 0.40 g Carbopol-940, 1.6 g glycerol, 0.04 g methylparaben, and a suitable amount of triethanolamine for pH value adjustment. The results of in vitro drug release showed that MCT in liposomal gels could be released in 12 h constantly in physiological saline as a Ritger-Peppas model. Compared with plain MCT in gel form, liposomal MCT in gel had higher skin retention in vitro. Conclusion: In this study, liposomal gels were formed for greater skin retention of MCT. It is potentially beneficial for reducing toxicities of MCT by topical administration with liposomal gel.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1206
Author(s):  
Aimilia D. Sklirou ◽  
Maria T. Angelopoulou ◽  
Aikaterini Argyropoulou ◽  
Eliza Chaita ◽  
Vasiliki Ioanna Boka ◽  
...  

Skin health is heavily affected by ultraviolet irradiation from the sun. In addition, senile skin is characterized by major changes in the collagen, elastin and in the hyaluronan content. Natural products (NPs) have been shown to delay cellular senescence or in vivo aging by regulating age-related signaling pathways. Moreover, NPs are a preferable source of photoprotective agents and have been proven to be useful against the undesirable skin hyperpigmentation. Greek flora harvests great plant diversity with approximately 6000 plant species, as it has a wealth of NPs. Here, we report an extensive screening among hundreds of plant species. More than 440 plant species and subspecies were selected and evaluated. The extracts were screened for their antioxidant and anti-melanogenic properties, while the most promising were further subjected to various in vitro and cell-based assays related to skin aging. In parallel, their chemical profile was analyzed with High-Performance Thin-Layer Chromatography (HPTLC) and/or Ultra-Performance Liquid Chromatography High-Resolution Mass Spectrometry (UPLC-HRMS). A variety of extracts were identified that can be of great value for the cosmetic industry, since they combine antioxidant, photoprotective, anti-melanogenic and anti-aging properties. In particular, the methanolic extracts of Sideritis scardica and Rosa damascena could be worthy of further attention, since they showed interesting chemical profiles and promising properties against specific targets involved in skin aging.


Author(s):  
Rana Elewa ◽  
Evgenia Makrantonaki ◽  
Christos C. Zouboulis

AbstractNeuropeptides (NP) are peptides that are released as chemical messengers from nerve cells. They act either in an endocrine manner, where they reach their target cells via the bloodstream or a paracrine manner, as co-transmitters modulating the function of neurotransmitters. To date approximately 100 different NP have been described in the literature. In recent years, several studies have documented that human skin expresses several functional receptors for NP, such as corticotropin-releasing hormone, melanocortins, β-endorphin, vasoactive intestinal polypeptide, neuropeptide Y and calcitonin gene-related peptide. These receptors modulate the production of inflammatory cytokines, proliferation, differentiation, lipogenesis and hormone metabolism in human skin cells. In addition, several NP are directly produced by human skin cells, indicating the complexity of understanding the real functions of NPs in human skin. In this review we address the possible effects of neuropeptides on the pathogenesis of aged skin.


2021 ◽  
Vol 22 (8) ◽  
pp. 3974
Author(s):  
Tuba M. Ansary ◽  
Md. Razib Hossain ◽  
Koji Kamiya ◽  
Mayumi Komine ◽  
Mamitaro Ohtsuki

Skin is the largest and most complex organ in the human body comprised of multiple layers with different types of cells. Different kinds of environmental stressors, for example, ultraviolet radiation (UVR), temperature, air pollutants, smoking, and diet, accelerate skin aging by stimulating inflammatory molecules. Skin aging caused by UVR is characterized by loss of elasticity, fine lines, wrinkles, reduced epidermal and dermal components, increased epidermal permeability, delayed wound healing, and approximately 90% of skin aging. These external factors can cause aging through reactive oxygen species (ROS)-mediated inflammation, as well as aged skin is a source of circulatory inflammatory molecules which accelerate skin aging and cause aging-related diseases. This review article focuses on the inflammatory pathways associated with UVR-mediated skin aging.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Hervé Pageon ◽  
Hélène Zucchi ◽  
Sylvie Ricois ◽  
Philippe Bastien ◽  
Daniel Asselineau

Skin aging is the result of superimposed intrinsic (individual) and extrinsic (e.g., UV exposure or nutrition) aging. Previous works have reported a relationship between UV irradiation and glycation in the aging process, leading, for example, to modified radical species production and the appearance of AGEs (advanced glycosylation end products) in increasing quantities, particularly glycoxidation products like pentosidine. In addition, the colocalization of AGEs and elastosis has also been observed. We first investigated the combination of the glycation reaction and UVA effects on a reconstructed skin model to explain their cumulative biological effect. We found that UVA exposure combined with glycation had the ability to intensify the response for specific markers: for example, MMP1 or MMP3 mRNA, proteases involved in extracellular matrix degradation, or proinflammatory cytokine, IL1α, protein expression. Moreover, the association of glycation and UVA irradiation is believed to promote an environment that favors the onset of an elastotic-like phenomenon: mRNA coding for elastin, elastase, and tropoelastin expression is increased. Secondly, because the damaging effects of UV radiation in vivo might be more detrimental in aged skin than in young skin due to increased accumulation of pentosidine and the exacerbation of alterations related to chronological aging, we studied the biological effect of soluble pentosidine in fibroblasts grown in monolayers. We found that pentosidine induced upregulation of CXCL2, IL8, and MMP12 mRNA expression (inflammatory and elastotic markers, respectively). Tropoelastin protein expression (elastin precursor) was also increased. In conclusion, fibroblasts in monolayers cultured with soluble pentosidine and tridimensional in vitro skin constructs exposed to the combination of AGEs and UVA promote an inflammatory state and an alteration of the dermal compartment in relation to an elastosis-like environment.


2020 ◽  
Author(s):  
Matiss Ozols ◽  
Alexander Eckersley ◽  
Kieran T Mellody ◽  
Venkatesh Mallikarjun ◽  
Stacey Warwood ◽  
...  

AbstractAlthough dysfunctional protein homeostasis (proteostasis) is a key factor in many age-related diseases, the untargeted identification of structural modifications in proteins remains challenging. Peptide location fingerprinting is a proteomic analysis technique capable of identifying structural modification-associated differences in mass spectrometry (MS) datasets of complex biological samples. A new webtool (Manchester Peptide Location Fingerprinter), applied to photoaged and intrinsically aged skin proteomes, can relatively quantify peptides (spectral counting) and map statistically significant differences to regions within protein structures. New photoageing biomarkers were identified in multiple proteins including matrix components (collagens and proteoglycans), oxidation and protease modulators (peroxiredoxins and SERPINs) and cytoskeletal proteins (keratins). Crucially, for many extracellular biomarkers, structural modification-associated differences were not correlated with relative abundance (by ion intensity). By applying peptide location fingerprinting to published MS datasets, (identifying biomarkers including collagen V and versican in ageing tendon) we demonstrate the potential of the MPLF webtool to discover novel biomarkers.


2021 ◽  
Author(s):  
Andang Miatmoko ◽  
Qurrota Ayunin ◽  
Widji Soeratri

Skin aging is a phenomenon resulting in reduced self-confidence, thus becoming a major factor in social determinants of health. The use of active cosmetic ingredients can help prevent skin aging. Transfersomes are well known to be capable of deeply penetrating the dermis. This scoping review provides an insight into transfersomes and their prospective use in anti-aging cosmetics. Numerous reports exist highlighting the successful skin delivery of therapeutic agents such as high-molecular-weight, poorly water soluble and poorly permeable active ingredients by means of transfersomes. Moreover, in vitro and in vivo studies have indicated that transfersomes increase the deposition, penetration and efficacy of active ingredients. However, the use of transfersomes in the delivery of active cosmetic ingredients is limited. Considering their similar physicochemical properties, transfersomes should possess considerable potential as a delivery system for anti-aging cosmetics.


2020 ◽  
Author(s):  
Ashani Weeraratna ◽  
Mitchell Fane ◽  
Stephen Douglass ◽  
Gretchen Alicea ◽  
Marie Webster ◽  
...  

Abstract Dormant tumor cells escape the primary site, do not grow out into macroscopic tumors in the distal site, but maintain enough plasticity to reactivate and form overt metastatic lesions, sometimes taking several decades. Despite its importance in metastasis and residual disease, few studies have been able to successfully model or characterize dormancy within melanoma. Here, we show that age-related changes in the lung microenvironment facilitate a permissive niche for efficient outgrowth of disseminated dormant tumor cells, in contrast to the aged skin, where age-related changes suppress melanoma growth but drive dissemination. A model of melanoma progression that addresses these microenvironmental complexities is the phenotype switching model, which argues that melanoma cells switch between a proliferative cell state and a slower-cycling, invasive state1–3. Dermal fibroblasts are key orchestrators of promoting phenotype switching in melanoma via changes in the secretion of soluble factors during aging4–8. Specifically, we have identified Wnt5A as a master regulator of activating metastatic dormancy, which enables efficient seeding and survival of melanoma cells in metastatic niches. Age-induced reprogramming of lung fibroblasts increases their secretion of the soluble Wnt antagonist sFRP1, which inhibits Wnt5A, enabling efficient metastatic outgrowth. Further, we have identified the tyrosine kinase receptors AXL and MER as promoting a dormancy-to-reactivation axis respectively. Overall, we find that age-induced changes in distal metastatic microenvironments promotes efficient reactivation of dormant melanoma cells in the lung.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexandre Ottaviani ◽  
Rita Eid ◽  
Didier Zoccola ◽  
Mélanie Pousse ◽  
Jean-Marc Dubal ◽  
...  

AbstractAging is a multifactorial process that results in progressive loss of regenerative capacity and tissue function while simultaneously favoring the development of a large array of age-related diseases. Evidence suggests that the accumulation of senescent cells in tissue promotes both normal and pathological aging. Oxic stress is a key driver of cellular senescence. Because symbiotic long-lived reef corals experience daily hyperoxic and hypoxic transitions, we hypothesized that these long-lived animals have developed specific longevity strategies in response to light. We analyzed transcriptome variation in the reef coral Stylophora pistillata during the day–night cycle and revealed a signature of the FoxO longevity pathway. We confirmed this pathway by immunofluorescence using antibodies against coral FoxO to demonstrate its nuclear translocation. Through qPCR analysis of nycthemeral variations of candidate genes under different light regimens, we found that, among genes that were specifically up- or downregulated upon exposure to light, human orthologs of two “light-up” genes (HEY1 and LONF3) exhibited anti-senescence properties in primary human fibroblasts. Therefore, these genes are interesting candidates for counteracting skin aging. We propose a large screen for other light-up genes and an investigation of the biological response of reef corals to light (e.g., metabolic switching) to elucidate these processes and identify effective interventions for promoting healthy aging in humans.


Sign in / Sign up

Export Citation Format

Share Document