scholarly journals Post-Sputtering Heat Treatments of Molybdenum on Silicon Wafer

2018 ◽  
Vol 8 (9) ◽  
pp. 1692 ◽  
Author(s):  
Xuguang Jia ◽  
Ziyun Lin ◽  
Terry Chien-Jen Yang ◽  
Binesh Puthen-Veettil ◽  
Lingfeng Wu ◽  
...  

This paper investigated the property evolutions of Mo thin films that were subjected to post-sputtering heat treatments from 700 °C to 1100 °C. It was found that, after annealing, the use of Si wafers eliminated crack formations found in previously reported Mo thin films sputtered on fused silica substrates. The recrystallization of the Mo thin film was found to start at 900 °C, which led to rearrangements of the preferred crystalline orientation and enhancement of grain size when the annealing temperature was further increased. The electrical conductivity of the Mo thin films was majorly affected by the increase of Mo crystallite size as the annealing temperature was increased. Overall, the improvement of material sustainability and compatibility in the high temperature annealing process has made it positive to implement a Mo-Si contact-substrate scheme for vertical structured Si QDs solar cells.

2012 ◽  
Vol 252 ◽  
pp. 211-215
Author(s):  
Xiao Hua Sun ◽  
Shuang Hou ◽  
Zhi Meng Luo ◽  
Cai Hua Huang ◽  
Zong Zhi Hu

Bismuth zinc niobate titanium (Bi1.5Zn0.5 Nb0.5Ti1.5O7) (BZNT) thin films were deposited on PtTiSiO2Si substrates by radio frequency (rf) magnetron sputtering. The microstructure, surface morphology, stress, dielectric and tunable properties of thin films were investigated as a function of initial annealing temperature. It’s found that high initial annealing temperature increases the grain size, dielectric constant and tunability of BZNT films simultaneously and decreases the tensile stress in films. The BZNT thin film annealed from 500 °C to 700 °C shows the highest FOM value of 45.67 with the smallest dielectric loss and upper tunability.


2021 ◽  
Vol 67 (2 Mar-Apr) ◽  
pp. 263
Author(s):  
T. O. Daniel ◽  
U. E. Uno ◽  
K. U. Isah ◽  
U. Ahmadu

This study is focused on the investigation of SnS thin film for transistor application. Electron trap which is associated with grain boundary effect affects the electrical conductivity of SnS semiconductor thin film thereby militating the attainment of the threshold voltage required for transistor operation. Grain size and grain boundary is a function of a semiconductor’s thickness. SnS semiconductor thin films of 0.20, 0.25, 0.30, 0.35, 0.40 μm were deposited using aerosol assisted chemical vapour deposition on glass substrates. Profilometry, Scanning electron microscope, Energy dispersive X-ray spectroscopy and hall measurement were used to characterise the composition, microstructure and electrical properties of the SnS thin film.  SnS thin films were found to consist of Sn and S elements whose composition varied with increase in thickness. The film conductivity was found to vary with grain size and grain boundary which is a function of the film thickness. The SnS film of 0.4 μm thickness shows optimal grain growth with a grain size of 130.31 nm signifying an optimum for the as deposited SnS films as the larger grains reduces the number of grain boundaries and charge trap density which allows charge carriers to move freely in the lattice thereby causing a reduction in resistivity and increase in conductivity of the films which is essential in obtaining the threshold voltage for a transistor semiconductor channel layer operation. The carrier concentration of due to low resistivity of 3.612 ×105 Ωcm of 0.4 μm SnS thin film thickness is optimum and favours the attainment of the threshold voltage for a field effect transistor operation hence the application of SnS thin film as a semiconductor channel layer in a field effect transistor.


2015 ◽  
Vol 1095 ◽  
pp. 647-650
Author(s):  
Ting Chen ◽  
Jia Nan Zhang

Polystyrene-b-Polylactide (PS-b-PLA) was dissolved in chlorobenzene, and the development of the micro-phase separation morphology in asymmetric PS-b-PLA thin films was investigated by AFM. The thin films were prepared by spinning casting at the speed of 6000 r/min for 60s on Si substrates. We get different morphologies of PS-b-PLA thin film by changing the annealing temperature from 150 °C to 170 °C. In addition, the annealing time influences the morphology of the film. When the annealing time increased from 2 hours to 15 hours and 30 hours, the morphology transformed from parallel to perpendicular to the substrate. By applying temperature gradients, we can control the morphology and orientation of the Block copolymer film self-assembly.


RSC Advances ◽  
2018 ◽  
Vol 8 (51) ◽  
pp. 29179-29188 ◽  
Author(s):  
Le Shi ◽  
Sifei Zhuo ◽  
Mutalifu Abulikemu ◽  
Gangaiah Mettela ◽  
Thangavelu Palaniselvam ◽  
...  

The effects of annealing treatment on crystallization behavior, grain size, electrochemical (EC) and photoelectrochemical (PEC) oxygen evolution reaction (OER) performances of bismuth vanadate (BiVO4) thin films are investigated in this work.


2020 ◽  
Vol 12 (02) ◽  
pp. 1-11
Author(s):  
Karrar Mahdi Saleh ◽  

CdO films were prepared using a chemical spray paralysis (CSP) method on the glass substrate at a temperature of 350 ° C and thickness (260 ± 15 nm), and study the effect annealing time (0, 1, 1.5, 2, 2.5) h at annealing temperature 450 °C on structural properties. The X-ray diffraction pattern the results showed that all CdO thin films have a polycrystalline structure and a prevalent growth in the direction (111), and the average grain size (G) in this direction ranges (29.80 - 33.23) nm. It generally increases in value while the agitation values, extraction density, number of crystals decrease by increasing the annealing time (0-2)h at annealing temperature 450 ° C of thin films. From the resulted of the atomic force microscope (AFM), the surface roughness, medium square root (RMS) and average grain size increase with the increasing of the annealing time (0-2) h, at annealing temperature 450 ° C. The thin film with annealing time 2.5 h at annealing temperature 450 °C . We note a slight decrease in the values of the coefficients ( XRD and AFM) Due to the changes in the crystal structure of thin films and beginning of cracks and crystal defects generated on the surface of the thin film during the annealing process. It has been observed in practice that the increase in the annealing time to 3 h at annealing temperature 450 ° C. led to the separation of the thin film from the substrates.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Weiguang Zhang ◽  
Jijun Li ◽  
Yongming Xing ◽  
Xiaomeng Nie ◽  
Fengchao Lang ◽  
...  

SiO2 thin films are widely used in micro-electro-mechanical systems, integrated circuits and optical thin film devices. Tremendous efforts have been devoted to studying the preparation technology and optical properties of SiO2 thin films, but little attention has been paid to their mechanical properties. Herein, the surface morphology of the 500-nm-thick, 1000-nm-thick and 2000-nm-thick SiO2 thin films on the Si substrates was observed by atomic force microscopy. The hardnesses of the three SiO2 thin films with different thicknesses were investigated by nanoindentation technique, and the dependence of the hardness of the SiO2 thin film with its thickness was analyzed. The results showed that the average grain size of SiO2 thin film increased with increasing film thickness. For the three SiO2 thin films with different thicknesses, the same relative penetration depth range of ~0.4–0.5 existed, above which the intrinsic hardness without substrate influence can be determined. The average intrinsic hardness of the SiO2 thin film decreased with the increasing film thickness and average grain size, which showed the similar trend with the Hall-Petch type relationship.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1802
Author(s):  
Dan Liu ◽  
Peng Shi ◽  
Yantao Liu ◽  
Yijun Zhang ◽  
Bian Tian ◽  
...  

La0.8Sr0.2CrO3 (0.2LSCO) thin films were prepared via the RF sputtering method to fabricate thin-film thermocouples (TFTCs), and post-annealing processes were employed to optimize their properties to sense high temperatures. The XRD patterns of the 0.2LSCO thin films showed a pure phase, and their crystallinities increased with the post-annealing temperature from 800 °C to 1000 °C, while some impurity phases of Cr2O3 and SrCr2O7 were observed above 1000 °C. The surface images indicated that the grain size increased first and then decreased, and the maximum size was 0.71 μm at 1100 °C. The cross-sectional images showed that the thickness of the 0.2LSCO thin films decreased significantly above 1000 °C, which was mainly due to the evaporation of Sr2+ and Cr3+. At the same time, the maximum conductivity was achieved for the film annealed at 1000 °C, which was 6.25 × 10−2 S/cm. When the thin films post-annealed at different temperatures were coupled with Pt reference electrodes to form TFTCs, the trend of output voltage to first increase and then decrease was observed, and the maximum average Seebeck coefficient of 167.8 µV/°C was obtained for the 0.2LSCO thin film post-annealed at 1100 °C. Through post-annealing optimization, the best post-annealing temperature was 1000 °C, which made the 0.2LSCO thin film more stable to monitor the temperatures of turbine engines for a long period of time.


2012 ◽  
Vol 512-515 ◽  
pp. 1736-1739
Author(s):  
Li Li Zhang ◽  
Guo Qiang Tan ◽  
Meng Cheng ◽  
Hui Jun Ren ◽  
Ao Xia

Fe(NO3)3•9H2O and Bi(NO3)3•5H2O were used as raw materials. BiFeO3 thin films were prepared by sol-gel method. The effects of annealing temperatures on the morphology and dielectric property of the thin films were studied. XRD results show that the multi-crystal thin films with pure phase are obtained when annealed at 500°C and 550°C. But annealing at 580°C will lead to the appearance of Bi2.46Fe5O12 phase.AFM images show that as the increase of annealing temperatures the surface toughness of the thin film is decreased, but the surface undulation of the thin films is decreased gradually. Within the frequency range of 1KHz~1MHz, the dielectric constant of BiFeO3 thin films is kept over 125 and it does not change very much from 500°C to 580°C. Annealed at 550°C, the BiFeO3 thin films with the lower loss are obtained. At 1MHz, the dielectric loss is 0.12.


1997 ◽  
Vol 471 ◽  
Author(s):  
J. Liu ◽  
D. C. Morton ◽  
M. R. Miller ◽  
Y. Li ◽  
E. W. Forsythe ◽  
...  

ABSTRACTZn2SiO4:Mn thin films were deposited and studied as thin film phosphors for flat panel cathodoluminescent displays. Crystallized films with improved electrical conductivity were obtained after conventional and rapid thermal annealings in a N2 environment at 850Xy11100 °C for 0.25 to 60 minutes. A maximum cathodoluminescent efficiency of 1.3 Lm/W was achieved under dc excitation at 1500 volts. The luminescent emission from these thin films was peaked around 525 nm. The decay time of these films was controlled in the range of 2 to 10 ms by varying the deposition and annealing parameters. The fast response time of these thin films overcomes the long decay limitation of the Zn2SiO4:Mn powder phosphor in practical display applications.


2013 ◽  
Vol 802 ◽  
pp. 47-52
Author(s):  
Chuleerat Ibuki ◽  
Rachasak Sakdanuphab

In this work the effects of amorphous (glass) and crystalline (Si) substrates on the structural, morphological and adhesion properties of CoFeB thin film deposited by DC Magnetron sputtering were investigated. It was found that the structure of a substrate affects to crystal formation, surface morphology and adhesion of CoFeB thin films. The X-Ray diffraction patterns reveal that as-deposited CoFeB thin film at low sputtering power was amorphous and would become crystal when the power increased. The increase in crystalline structure of CoFeB thin film is attributed to the crystalline substrate and the increase of kinetic energy of sputtering atoms. Atomic Force Microscopy images of CoFeB thin film clearly show that the roughness, grain size, and uniformity correlate to the sputtering power and the structure of substrate. The CoFeB thin film on glass substrate shows a smooth surface and a small grain size whereas the CoFeB thin film on Si substrate shows a rough surface and a slightly increases of grain size. Sticky Tape Test on CoFeB thin film deposited on glass substrate indicates the adhesion failure with a high sputtering power. The results suggest that the crystalline structure of substrate affects to the atomic bonding and the sputtering power affects to intrinsic stress of CoFeB thin film.


Sign in / Sign up

Export Citation Format

Share Document