scholarly journals Biostimulants Application: A Low Input Cropping Management Tool for Sustainable Farming of Vegetables

Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 698
Author(s):  
Mohamad Hesam Shahrajabian ◽  
Christina Chaski ◽  
Nikolaos Polyzos ◽  
Spyridon A. Petropoulos

Biostimulants, are a diverse class of compounds including substances or microorganism which have positive impacts on plant growth, yield and chemical composition as well as boosting effects to biotic and abiotic stress tolerance. The major plant biostimulants are hydrolysates of plant or animal protein and other compounds that contain nitrogen, humic substances, extracts of seaweeds, biopolymers, compounds of microbial origin, phosphite, and silicon, among others. The mechanisms involved in the protective effects of biostimulants are varied depending on the compound and/or crop and mostly related with improved physiological processes and plant morphology aspects such as the enhanced root formation and elongation, increased nutrient uptake, improvement in seed germination rates and better crop establishment, increased cation exchange, decreased leaching, detoxification of heavy metals, mechanisms involved in stomatal conductance and plant transpiration or the stimulation of plant immune systems against stressors. The aim of this review was to provide an overview of the application of plant biostimulants on different crops within the framework of sustainable crop management, aiming to gather critical information regarding their positive effects on plant growth and yield, as well as on the quality of the final product. Moreover, the main limitations of such practice as well as the future prospects of biostimulants research will be presented.

1970 ◽  
Vol 17 ◽  
pp. 17-22 ◽  
Author(s):  
Kamal Singh ◽  
A. A. Khan ◽  
Iram Khan ◽  
Rose Rizvi ◽  
M. Saquib

Plant growth, yield, pigment and protein content of cow-pea were increased significantly at lower levels (20 and 40%) of fly ash but reverse was true at higher levels (80 and 100%). Soil amended by 60% fly ash could cause suppression in growth and yield in respect to 40% fly ash treated cow-pea plants but former was found at par with control (fly ash untreated plants). Maximum growth occurred in plants grown in soil amended with 40% fly ash. Nitrogen content of cow-pea was suppressed progressively in increasing levels of fly ash. Moreover,  Rhizobium leguminosarum  influenced the growth and yield positively but Meloidogyne javanica caused opposite effects particularly at 20 and 40% fly ash levels. The positive effects of R. leguminosarum were marked by M. javanica at initial levels. However, at 80 and 100% fly ash levels, the positive and negative effects of R. leguminosarum and/or M. javanica did not appear as insignificant difference persist among such treatments.Key words:  Meloidogyne javanica; Rhizobium leguminosarum; Fly ash; Growth; YieldDOI: 10.3126/eco.v17i0.4098Ecoprint An International Journal of Ecology Vol. 17, 2010 Page: 17-22 Uploaded date: 28 December, 2010  


HortScience ◽  
2021 ◽  
pp. 1-10
Author(s):  
Metin Turan ◽  
Ertan Yildirim ◽  
Melek Ekinci ◽  
Sanem Argin

Plant biostimulants are microorganisms (PGPR) and/or products obtained from different organic substances that positively affect plant growth and efficiency and reduce the negative effects of abiotic challenges. Effects of biostimulants on the plant growth, yield, mineral content, antioxidant enzyme activity, H2O2, malondialdehyde (MDA), sucrose, and proline contents of cherry tomato (Solanum lycopersicum var. cerasiforme L.) grown in soils with two different characteristics were investigated during a pot study under greenhouse conditions. Soil I was a fertile routinely vegetable-cultivated soil. Soil II had high salinity, high CaCO3 content, and low organic matter content. Commercial biostimulant products Powhumus® (PH), Huminbio Microsense Seed® (SC), Huminbio Microsense Bio® (RE), and Fulvagra® (FU) were used as seed coatings and/or drench solutions. All biostimulant treatments improved the plant growth and yield compared with the control in both soils. All biostimulant applications were more effective in soil II than in soil I. RE was the most effective application for mineral content in soil I, whereas FU was the most effective in soil II. Antioxidant activity, H2O2, MDA, and proline contents were decreased in both soils when biostimulants were used compared with the control. Peroxide (POD) activity was greater with SC1 in soil II. The RE treatment increased the sucrose content in soil II. In conclusion, single and combined use of high-purity fulvic acid and PGPR had positive effects on the growth of cherry tomato in fertile soil and under stressed conditions.


2022 ◽  
Author(s):  
Irfan Ahmad ◽  
Muhammad Haroon U Rashid ◽  
Shahid Nawaz ◽  
Muhammad Asif ◽  
Taimoor Hassan Farooq ◽  
...  

<i>Bombax ceiba</i> is an important agroforestry tree species widely distributed throughout the world. It has been extensively grown and planted for eras in hot and dry regions and high humidity zones of southern Asia. The main objective of this research was to evaluate the growth response of <i>B. ceiba</i> in response to different compost treatments. Different morphological traits (plant height, stem height, root length) and biomass (shoot fresh weight, shoot dry weight, root fresh weight, root dry weight and root/shoot ratio) were measured. Two experiments (pot experiment = seedlings) and (field experiment = saplings) were conducted simultaneously. Different compost treatments: (T<sub>0</sub>) = (Compost 0% + Soil 0%), (T<sub>1</sub>) = (Compost 25% + Soil 75%), (T<sub>2</sub>) = (Compost 50% + Soil 50%), (T<sub>3</sub>) = (Compost 75% + Soil 25%), (T<sub>4</sub>) = (Compost 100% + Soil 0%) were applied in the growing media. Results demonstrated that plant growth increased with the increment in compost application. In the pot experiment, <i>B. ceiba</i> exhibited its better growth under 75% of compost application, whereas in the field experiment, 100% compost was helpful for the best production of <i>B. ceiba</i>. Overall, positive effects of compost were observed for the growth of <i>B. ceiba</i>. The plant growth was increased greatly in response to the better content of organic fertilizer, and it was determined that compost enhances soil fertility. It should be implemented as organic fertilizer in agroforestry operations for optimizing plant growth and yield.


2021 ◽  
Vol 13 (3) ◽  
pp. 1140
Author(s):  
Anirban Basu ◽  
Priyanka Prasad ◽  
Subha Narayan Das ◽  
Sadaf Kalam ◽  
R. Z. Sayyed ◽  
...  

The quest for enhancing agricultural yields due to increased pressure on food production has inevitably led to the indiscriminate use of chemical fertilizers and other agrochemicals. Biofertilizers are emerging as a suitable alternative to counteract the adverse environmental impacts exerted by synthetic agrochemicals. Biofertilizers facilitate the overall growth and yield of crops in an eco-friendly manner. They contain living or dormant microbes, which are applied to the soil or used for treating crop seeds. One of the foremost candidates in this respect is rhizobacteria. Plant growth promoting rhizobacteria (PGPR) are an important cluster of beneficial, root-colonizing bacteria thriving in the plant rhizosphere and bulk soil. They exhibit synergistic and antagonistic interactions with the soil microbiota and engage in an array of activities of ecological significance. They promote plant growth by facilitating biotic and abiotic stress tolerance and support the nutrition of host plants. Due to their active growth endorsing activities, PGPRs are considered an eco-friendly alternative to hazardous chemical fertilizers. The use of PGPRs as biofertilizers is a biological approach toward the sustainable intensification of agriculture. However, their application for increasing agricultural yields has several pros and cons. Application of potential biofertilizers that perform well in the laboratory and greenhouse conditions often fails to deliver the expected effects on plant development in field settings. Here we review the different types of PGPR-based biofertilizers, discuss the challenges faced in the widespread adoption of biofertilizers, and deliberate the prospects of using biofertilizers to promote sustainable agriculture.


2018 ◽  
Vol 16 (3) ◽  
pp. e0802 ◽  
Author(s):  
Saad Farouk ◽  
Sally A. Arafa

Salinity is a global issue threatening land productivity and food production. The present study aimed to examine the role of sodium nitroprusside (SNP) on the alleviation of NaCl stress on different parameters of canola (Brassica napus L.) plant growth, yield as well as its physiological and anatomical characteristics. Canola plants were grown under greenhouse conditions in plastic pots and were exposed to 100 mM NaCl. At 50 and 70 days from sown, plants were sprayed with SNP (50 and 100 µM) solutions under normal or salinity condition. Growth and yield characters as well as some biochemical and anatomical changes were investigated under the experimental conditions. Salinity stress caused an extremely vital decline in plant growth and yield components. A significant increase was found in membrane permeability, lipid peroxidation, hydrogen peroxide, sodium, chloride, proline, soluble sugars, ascorbic and phenol in canola plants under salinity stress. Under normal conditions, SNP application significantly increased all studies characters, except sodium, chloride, hydrogen peroxide, lipid peroxidation, membrane permeability that markedly reduced. Application of SNP to salt-affected plants mitigated the injuries of salinity on plant growth, yield, and improved anatomical changes. The present investigation demonstrated that SNP has the potential to alleviate the salinity injurious on canola plants.


Horticulturae ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 72
Author(s):  
Mazhar Abbas ◽  
Faisal Imran ◽  
Rashid Iqbal Khan ◽  
Muhammad Zafar-ul-Hye ◽  
Tariq Rafique ◽  
...  

Bitter gourd is one of the important cucurbits and highly liked among both farmers and consumers due to its high net return and nutritional value. However, being monoecious, it exhibits substantial variation in flower bearing pattern. Plant growth regulators (PGRs) are known to influence crop phenology while gibberellic acid (GA3) is one of the most prominent PGRs that influence cucurbits phenology. Therefore, a field trial was conducted at University of Agriculture Faisalabad to evaluate the impact of a commercial product of gibberellic acid (GA3) on growth, yield and quality attributes of two bitter gourd (Momordica charantiaL.) cultivars. We used five different concentrations (0.4 g, 0.6 g, 0.8 g, 1.0 g, and 1.2 g per litre) of commercial GA3 product (Gibberex, 10% Gibberellic acid). Results showed that a higher concentration of gibberex (1.0 and 1.20 g L−1 water) enhanced the petiole length, intermodal length, and yield of bitter gourd cultivars over control in Golu hybrid and Faisalabad Long. A significant decrease in the enzyme superoxidase dismutase, peroxidase, and catalase activities were observed with an increasing concentration of gibberex (1.0 and 1.20 gL−1 water) as compared to control. These results indicate that the exogenous application of gibberex at a higher concentration (1.2 g L−1) has a dual action in bitter gourd plant: i) it enhances the plant growth and yield, and ii) it also influenced the antioxidant enzyme activities in fruits. These findings may have a meaningful, practical use for farmers involved in agriculture and horticulture.


2018 ◽  
Vol 73 (1-2) ◽  
pp. 15-32 ◽  
Author(s):  
Hani Al-Ahmad

AbstractWith the increase in human demands for energy, purpose-grown woody crops could be part of the global renewable energy solution, especially in geographical regions where plantation forestry is feasible and economically important. In addition, efficient utilization of woody feedstocks would engage in mitigating greenhouse gas emissions, decreasing the challenge of food and energy security, and resolving the conflict between land use for food or biofuel production. This review compiles existing knowledge on biotechnological and genomics-aided improvements of biomass performance of purpose-grown poplar, willow, eucalyptus and pine species, and their relative hybrids, for efficient and sustainable bioenergy applications. This includes advancements in tree in vitro regeneration, and stable expression or modification of selected genes encoding desirable traits, which enhanced growth and yield, wood properties, site adaptability, and biotic and abiotic stress tolerance. Genetic modifications used to alter lignin/cellulose/hemicelluloses ratio and lignin composition, towards effective lignocellulosic feedstock conversion into cellulosic ethanol, are also examined. Biotech-trees still need to pass challengeable regulatory authorities’ processes, including biosafety and risk assessment analyses prior to their commercialization release. Hence, strategies developed to contain transgenes, or to mitigate potential transgene flow risks, are discussed.


2019 ◽  
Vol 11 (3) ◽  
pp. 673-679 ◽  
Author(s):  
Anju B. Raj ◽  
Sheeja K. Raj

Zn plays major role in many physiological processes viz., chlorophyll formation, pollen formation, fertilization, protein synthesis, cell elongation, nodule formation etc. Hence, Zn nutrition favourably influences the growth, yield, physiological parameters and nodule formation in pulses. Similar to that of Zn, B also plays a major role in the functioning of reproductive tissues, structural integrity of plasma membrane, sugar transport, nodule development etc. Boron nutrition reduces the flower drop, increases the pod setting in pulses and also increased nodulation in pulses. The review elaborates the effect of Zn and B nutrition on the physiological, growth and yield parameters and yield of pulses and their effect on nodule formation and uptake of nutrients in pulses.


2021 ◽  
Vol 8 (sp1) ◽  
pp. 1-5
Author(s):  
Ajar Nath Yadav ◽  
Divjot Kour ◽  
Amrik Singh Ahluwalia

Soil is the basic requirement for agriculture crop production and simultaneously the microbial activity is important to improve soil health for healthy crop growth because microbial communities play an important role in building a complex link between plants and soil. Microbiomes from plants, soil and extreme environments are naturally gifted with amazing capabilities which play significant roles in the maintenance of global nutrient balance and ecosystem functions. The microbiomes from diverse niches have in fact emerged as potential tools for improving the plant growth and productivity by diverse mechanisms include solubilization of nutrients, nitrogen fixation, hormonal stimulation as well as biotic and abiotic stress tolerance. Further, these microbiomes have an immense potential to maintain soil health and fertility. Thus, dependent on their mode of action and effects, these microbiomes can be used as biofertilizers, biopesticides, plant strengtheners, and phytostimulators which will play a major role in improving productivity and achieving sustainability in an eco-friendly, economical and cost effective manner.


Sign in / Sign up

Export Citation Format

Share Document