scholarly journals MicroRNA-214 in Health and Disease

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3274
Author(s):  
Meer M. J. Amin ◽  
Christopher J. Trevelyan ◽  
Neil A. Turner

MicroRNAs (miRNAs) are endogenously expressed, non-coding RNA molecules that mediate the post-transcriptional repression and degradation of mRNAs by targeting their 3′ untranslated region (3′-UTR). Thousands of miRNAs have been identified since their first discovery in 1993, and miR-214 was first reported to promote apoptosis in HeLa cells. Presently, miR-214 is implicated in an extensive range of conditions such as cardiovascular diseases, cancers, bone formation and cell differentiation. MiR-214 has shown pleiotropic roles in contributing to the progression of diseases such as gastric and lung cancers but may also confer cardioprotection against excessive fibrosis and oxidative damage. These contrasting functions are achieved through the diverse cast of miR-214 targets. Through silencing or overexpressing miR-214, the detrimental effects can be attenuated, and the beneficial effects promoted in order to improve health outcomes. Therefore, discovering novel miR-214 targets and understanding how miR-214 is dysregulated in human diseases may eventually lead to miRNA-based therapies. MiR-214 has also shown promise as a diagnostic biomarker in identifying breast cancer and coronary artery disease. This review provides an up-to-date discussion of miR-214 literature by describing relevant roles in health and disease, areas of disagreement, and the future direction of the field.

2020 ◽  
Vol 20 (16) ◽  
pp. 1883-1894
Author(s):  
Yuan-Rong Liu ◽  
Ping-Yu Wang ◽  
Ning Xie ◽  
Shu-Yang Xie

MicroRNAs (miRNAs) are short, non-coding RNA molecules that regulate gene expression by translational repression or deregulation of messenger RNAs. Accumulating evidence suggests that miRNAs play various roles in the development and progression of lung cancers. Although their precise roles in targeted cancer therapy are currently unclear, miRNAs have been shown to affect the sensitivity of tumors to anticancer drugs. A large number of recent studies have demonstrated that some anticancer drugs exerted antitumor activities by affecting the expression of miRNAs and their targeted genes. These studies have elucidated the specific biological mechanism of drugs in tumor suppression, which provides a new idea or basis for their clinical application. In this review, we summarized the therapeutic mechanisms of drugs in lung cancer therapy through their effects on miRNAs and their targeted genes, which highlights the roles of miRNAs as targets in lung cancer therapy.


Dose-Response ◽  
2014 ◽  
Vol 12 (4) ◽  
pp. dose-response.1 ◽  
Author(s):  
Mark P. Mattson

Humans and their predecessors evolved in environments where they were challenged intermittently with: 1) food scarcity; 2) the need for aerobic fitness to catch/kill prey and avoid or repel attackers; and 3) exposure to biological toxins present in foodstuffs. Accordingly, cells and organ systems acquired and retained molecular signaling and metabolic pathways through which the environmental challenges enhanced the functionality and resilience of the cells and organisms. Within the past 60 years there has been a precipitous diminution of such challenges in modern societies because of the development of technologies that provide a continuous supply of energy-dense processed foods and that largely eliminate the need for physical exertion. As a consequence of the modern ‘couch potato’ lifestyle, signaling pathways that mediate beneficial effects of environmental challenges on health and disease resistance are disengaged, thereby rendering people vulnerable to obesity, diabetes, cardiovascular disease, cancers and neurodegenerative disorders. Reversal of the epidemic of diseases caused by unchallenging lifestyles will require a society-wide effort to re-introduce intermittent fasting, exercise and consumption of plants containing hormetic phytochemicals into daily and weekly routines.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1620
Author(s):  
Danyel Fernandes Contiliani ◽  
Yasmin de Araújo Ribeiro ◽  
Vitor Nolasco de Moraes ◽  
Tiago Campos Pereira

MicroRNAs (miRNAs) are small non-coding RNA molecules able to post-transcriptionally regulate gene expression via base-pairing with partially complementary sequences of target transcripts. Prion diseases comprise a singular group of neurodegenerative conditions caused by endogenous, misfolded pathogenic (prion) proteins, associated with molecular aggregates. In humans, classical prion diseases include Creutzfeldt–Jakob disease, fatal familial insomnia, Gerstmann–Sträussler–Scheinker syndrome, and kuru. The aim of this review is to present the connections between miRNAs and prions, exploring how the interaction of both molecular actors may help understand the susceptibility, onset, progression, and pathological findings typical of such disorders, as well as the interface with some prion-like disorders, such as Alzheimer’s. Additionally, due to the inter-regulation of prions and miRNAs in health and disease, potential biomarkers for non-invasive miRNA-based diagnostics, as well as possible miRNA-based therapies to restore the levels of deregulated miRNAs on prion diseases, are also discussed. Since a cure or effective treatment for prion disorders still pose challenges, miRNA-based therapies emerge as an interesting alternative strategy to tackle such defying medical conditions.


MicroRNA ◽  
2021 ◽  
Vol 11 ◽  
Author(s):  
Héctor Ojeda-Casares ◽  
Irene Paradisi

Background: Preeclampsia is a pregnancy-specific syndrome, characterized by hypertension, proteinuria, and edema. Affecting between 2% and 8% of gestations worldwide, it accounts for 10% to 15% of maternal deaths. Although its etiology remains unclear, it includes complex pathological processes involving microRNAs, small non-coding RNA molecules with post-transcriptional repression effects on target mRNAs. Objective: To assess the expression of miRNAs during normal pregnancies and those complicated by preeclampsia, a sample of Venezuelan women were studied. Method: Nine placental microRNAs (hsa-miR- 20a-5p, 21-3p, 26a-5p, 181a-5p, 199a-5p, 210-3p, 222-5p, 223-3p, 424-3p) were measured in maternal plasma during the second and third trimesters of normal pregnancies, using a SYBR Green®-based real-time PCR, and compared the results against women affected by preeclampsia. Results: All assessed miRNAs were detected in maternal plasma in pregnancies with and without preeclampsia. All except miR-222 were over-expressed during disease when compared to the second and to third-trimester controls. miR-20a, miR-21, miR-26a, and miR-223 were down-regulated in the third trimester in comparison to the second trimester in normal pregnancies. Conclusion: The variation of the miRNAs expression through normal pregnancies suggested their involvement in normal physiological pregnancy processes. In contrast, the significant deregulation of the nine studied miRNAs during preeclampsia indicated the involvement of their target genes in the pathogenesis of the disease. miR-199a and miR-21-3p showed the greatest changes in expression. This study shows for the first time the presence of miR-20a, miR-199, and miR-424 and the variations they undergo in the plasma of pregnant women with preeclampsia.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 902
Author(s):  
Eva Costanzi ◽  
Carolina Simioni ◽  
Gabriele Varano ◽  
Cinzia Brenna ◽  
Ilaria Conti ◽  
...  

Extracellular vesicles (EVs) have attracted interest as mediators of intercellular communication following the discovery that EVs contain RNA molecules, including non-coding RNA (ncRNA). Growing evidence for the enrichment of peculiar RNA species in specific EV subtypes has been demonstrated. ncRNAs, transferred from donor cells to recipient cells, confer to EVs the feature to regulate the expression of genes involved in differentiation, proliferation, apoptosis, and other biological processes. These multiple actions require accuracy in the isolation of RNA content from EVs and the methodologies used play a relevant role. In liver, EVs play a crucial role in regulating cell–cell communications and several pathophysiological events in the heterogeneous liver class of cells via horizontal transfer of their cargo. This review aims to discuss the rising role of EVs and their ncRNAs content in regulating specific aspects of hepatocellular carcinoma development, including tumorigenesis, angiogenesis, and tumor metastasis. We analyze the progress in EV-ncRNAs’ potential clinical applications as important diagnostic and prognostic biomarkers for liver conditions.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 850
Author(s):  
María Ángeles Martín ◽  
Sonia Ramos

Flavanols are natural occurring polyphenols abundant in fruits and vegetables to which have been attributed to beneficial effects on health, and also against metabolic diseases, such as diabetes, obesity and metabolic syndrome. These positive properties have been associated to the modulation of different molecular pathways, and importantly, to the regulation of immunological reactions (pro-inflammatory cytokines, chemokines, adhesion molecules, nuclear factor-κB [NF-κB], inducible enzymes), and the activity of cells of the immune system. In addition, flavanols can modulate the composition and function of gut microbiome in a prebiotic-like manner, resulting in the positive regulation of metabolic pathways and immune responses, and reduction of low-grade chronic inflammation. Moreover, the biotransformation of flavanols by gut bacteria increases their bioavailability generating a number of metabolites with potential to affect human metabolism, including during metabolic diseases. However, the exact mechanisms by which flavanols act on the microbiota and immune system to influence health and disease remain unclear, especially in humans where these connections have been scarcely explored. This review seeks to summarize recent advances on the complex interaction of flavanols with gut microbiota, immunity and inflammation focus on metabolic diseases.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Anupam Bhattacharya ◽  
Simang Champramary ◽  
Tanya Tripathi ◽  
Debajit Thakur ◽  
Ilya Ioshikhes ◽  
...  

Abstract Background Our understanding of genome regulation is ever-evolving with the continuous discovery of new modes of gene regulation, and transcriptomic studies of mammalian genomes have revealed the presence of a considerable population of non-coding RNA molecules among the transcripts expressed. One such non-coding RNA molecule is long non-coding RNA (lncRNA). However, the function of lncRNAs in gene regulation is not well understood; moreover, finding conserved lncRNA across species is a challenging task. Therefore, we propose a novel approach to identify conserved lncRNAs and functionally annotate these molecules. Results In this study, we exploited existing myogenic transcriptome data and identified conserved lncRNAs in mice and humans. We identified the lncRNAs expressing differentially between the early and later stages of muscle development. Differential expression of these lncRNAs was confirmed experimentally in cultured mouse muscle C2C12 cells. We utilized the three-dimensional architecture of the genome and identified topologically associated domains for these lncRNAs. Additionally, we correlated the expression of genes in domains for functional annotation of these trans-lncRNAs in myogenesis. Using this approach, we identified conserved lncRNAs in myogenesis and functionally annotated them. Conclusions With this novel approach, we identified the conserved lncRNAs in myogenesis in humans and mice and functionally annotated them. The method identified a large number of lncRNAs are involved in myogenesis. Further studies are required to investigate the reason for the conservation of the lncRNAs in human and mouse while their sequences are dissimilar. Our approach can be used to identify novel lncRNAs conserved in different species and functionally annotated them.


2015 ◽  
Vol 129 (2) ◽  
pp. 93-105 ◽  
Author(s):  
Mamoru Satoh ◽  
Yuji Takahashi ◽  
Tsuyoshi Tabuchi ◽  
Yoshitaka Minami ◽  
Makiko Tamada ◽  
...  

Coronary artery disease (CAD) is the leading cause of death worldwide. The efficacy and safety of statins (3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors) in primary and secondary prevention of CAD are confirmed in several large studies. It is well known that statins have some pleiotropic, anti-atherosclerotic effects. We review the molecular mechanisms underlying the beneficial effects of statins revealed in recently published studies. Endothelial cell injury is regarded as the classic stimulus for the development of atherosclerotic lesions. In addition, the inflammatory process plays an important role in the aetiology of atherosclerosis. In particular, chronic inflammation plays a key role in coronary artery plaque instability and subsequent occlusive thrombosis. Our previous reports and others have demonstrated beneficial effects of statins on endothelial dysfunction and chronic inflammation in CAD. A better understanding of the molecular mechanism underlying the effectiveness of statins against atherosclerosis may provide a novel therapeutic agent for the treatment of coronary atherosclerosis. The present review summarizes the cellular and molecular mechanism of statins against coronary atherosclerosis.


Reproduction ◽  
2014 ◽  
Vol 148 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Fulu Dong ◽  
Yuan Zhang ◽  
Fei Xia ◽  
Yi Yang ◽  
Sidong Xiong ◽  
...  

MicroRNAs (miRNAs) are non-coding RNA molecules of about 22 nucleotides that involved in post-transcriptional gene regulation. Evidence indicates that miRNAs play essential roles in endometriosis, pre-eclampsia, infertility and other reproductive system diseases. However, whether miRNAs are involved in recurrent spontaneous abortion (RSA) is unclear. In this work, we analysed the miRNA expression profiles in six pairs of villus or decidua from RSA patients and normal pregnancy (NP) women using a human miRNA microarray. Some of the chip results were confirmed by RT-qPCR. In the villi of RSA patients, expression of hsa-miR-184, hsa-miR-187 and hsa-miR-125b-2 was significantly higher, while expression of hsa-miR-520f, hsa-miR-3175 and hsa-miR-4672 was significantly lower, comparing with those of NP control. As well, a total of five miRNAs (hsa-miR-517c, hsa-miR-519a-1, hsa-miR-522, hsa-miR-520h and hsa-miR-184) were upregulated in the decidua of RSA patients. The target genes of these differentially expressed miRNAs were predicted by miRWalk, and we speculate a network of miRNA regulating RSA by target genes function on adhesion, apoptosis and angiogenesis. Our study may help clarify the molecular mechanisms which are involved in the progression of RSA, and provide a reference for future research.


Sign in / Sign up

Export Citation Format

Share Document