scholarly journals Modulation of Fatty Acid-Related Genes in the Response of H9c2 Cardiac Cells to Palmitate and n-3 Polyunsaturated Fatty Acids

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 537
Author(s):  
Silvia Cetrullo ◽  
Stefania D’Adamo ◽  
Veronica Panichi ◽  
Rosa Maria Borzì ◽  
Carla Pignatti ◽  
...  

While high levels of saturated fatty acids are associated with impairment of cardiovascular functions, n-3 polyunsaturated fatty acids (PUFAs) have been shown to exert protective effects. However the molecular mechanisms underlying this evidence are not completely understood. In the present study we have used rat H9c2 ventricular cardiomyoblasts as a cellular model of lipotoxicity to highlight the effects of palmitate, a saturated fatty acid, on genetic and epigenetic modulation of fatty acid metabolism and fate, and the ability of PUFAs, eicosapentaenoic acid, and docosahexaenoic acid, to contrast the actions that may contribute to cardiac dysfunction and remodeling. Treatment with a high dose of palmitate provoked mitochondrial depolarization, apoptosis, and hypertrophy of cardiomyoblasts. Palmitate also enhanced the mRNA levels of sterol regulatory element-binding proteins (SREBPs), a family of master transcription factors for lipogenesis, and it favored the expression of genes encoding key enzymes that metabolically activate palmitate and commit it to biosynthetic pathways. Moreover, miR-33a, a highly conserved microRNA embedded in an intronic sequence of the SREBP2 gene, was co-expressed with the SREBP2 messenger, while its target carnitine palmitoyltransferase-1b was down-regulated. Manipulation of the levels of miR-33a and SREBPs allowed us to understand their involvement in cell death and hypertrophy. The simultaneous addition of PUFAs prevented the effects of palmitate and protected H9c2 cells. These results may have implications for the control of cardiac metabolism and dysfunction, particularly in relation to dietary habits and the quality of fatty acid intake.

2000 ◽  
Vol 70 (1) ◽  
pp. 51-61 ◽  
Author(s):  
L. O. W. McClintont ◽  
A. F. Carson

AbstractThis study investigated the efficiency of growth and the carcass characteristics of 24 Greyface (Border Leicester × Scottish Blackface), 24 Texel (12 purebred and 12 Texel × Texel-Greyface) and 24 Rouge (12 purebred and 12 Rouge × Rouge-Greyface) lambs finished on the same level of feeding. The efficiency of live-weight gain (kg/MJ) was higher in Greyface compared with Texel lambs (P< 0·01). The efficiency of empty body-weight gain (kg/MJ) was higher in Greyface (P< 0·01) and Rouge (P< 0·05) compared with Texel lambs. The efficiency of carcass gains (kg/MJ) tended to be higher in Greyface and Rouge compared with Texel lambs (P= 0·07). The efficiency of non-carcass component gains (kg/MJ) was also higher in Greyface compared with Texel lambs (P0·05). Carcass water, protein, lipid and ash gains did not vary significantly between the genotypes, however carcass energy gain tended to be higher in Greyface and Rouge compared with Texel lambs (P= 0·08). The relative proportions of water, protein, lipid and ash in carcass gains did not vary significantly between the genotypes. At the end of the experiment carcass water content was higher in Texel compared with Greyface lambs (P< 0·05) and carcass ash content was lower in Texel compared with Greyface (P< 0·01) and Rouge (P< 0·05) lambs. The concentration of saturated fatty acids was higher in Greyface compared with Rouge lambs (P< 0·001) and higher in Rouge compared with Texel lambs (P< 0·05). Monounsaturated fatty acid concentrations were higher in Rouge compared with Greyface lambs (P< 0·05) and higher in Texel compared with Rouge lambs (P< 0·001). Polyunsaturated fatty acid concentrations were higher in Rouge and Texel compared with Greyface lambs (P< 0·01). The ratio of n-6:n-3 fatty acids was lower in Rouge compared with Greyface lambs (P< 0·05).The efficiency of empty body gain was higher in male compared with female lambs (P< 0·05). Carcass water (P< 0·01) and protein (P< 0·05) gains were higher in male lambs. At the end of the experiment male carcasses contained a higher content of water (P< 0·05), protein (P< 0·01) and ash (P= 0·07), and a lower lipid (P< 0·05) and energy (P< 0·001) content. Carcass lipids from male lambs contained a higher concentration of polyunsaturated fatty acids (P< 0·001) and tended to contain a lower concentration of saturated fatty acids (P = 0·06).


2010 ◽  
Vol 39 (10) ◽  
pp. 2297-2303 ◽  
Author(s):  
Daniele Cristina da Silva-Kazama ◽  
Geraldo Tadeu dos Santos ◽  
Paula Toshimi Matumoto Pintro ◽  
Jesuí Vergílio Visentainer ◽  
Ricardo Kazama ◽  
...  

Eight Holstein cows with body weight 570 ± 43 kg and 60 ± 20 lactation days were distributed in a double Latin square design with four 21-day periods to determine the effects of feeding ground or whole flaxseed with or without monensin supplementation (0.02% on a dry matter basis) on fatty acid profile of butter stored for 15 and 45 days. Ground flaxseed supply, in comparison to whole flaxseed, reduced relative percentages of 16:0, cis7-16:1, 17:0, and cis10-17:1 but it increased those of cis9,trans11-18:2, cis3-18:3, and omega 3 fatty acids in butter fat, reducing relative percentage of medium-chain fatty acids and increasing the content of polyunsaturated fatty acids. Supplementation with monensin increased relative percentages of cis9,trans11-18:2 and tended to increase relative percentage of 17:0 and decrease that of saturated fatty acids in butter. Butter from cows fed diet with monensin presented lower relative percentages of cis 6-20:4. Relative percentages of cis 9-16:1, cis10-17:1, 18:0, trans11-18:1, cis9-18:1, cis3-18:3, cis6-20:4 in butter stored for 15 days were higher than those stored for 45 days and the relative percentages of cis3-20:5 tended to decrease with the increase of storage period. As a result, relative percentages of saturated fatty acids and medium-chain fatty acids increased with storage time, while those of monounsaturated and long-chain fatty acids decreased. Butter enriched with polyunsaturated fatty acids may have a shorter shelf life due to the negative effect of storage on fatty acid profile which may cause oxidation and rancidity.


2021 ◽  
Vol 14 (1) ◽  
pp. 11-22
Author(s):  
Prasetyo Nugroho ◽  
Komang Gede Wiryawan ◽  
Dewi Apri Astuti ◽  
Wasmen Manalu

Background and Aim: Flushing with the manipulation of fatty acids, particularly polyunsaturated fatty acids, like linoleic and α-linolenic acids in the ration, is a strategy to raise the nutritional status of the female mammals to improve ovarian function and follicle development. This study was designed to investigate the effectiveness of flushing supplementation with different types of polyunsaturated and saturated fatty acids in stimulating follicle growth and development during estrus in Ettawa Grade does with a low initial body condition score (BCS ≤2). Materials and Methods: Eighteen Ettawa Grade does in the second parity, with an average body weight of 32.11±2.19 kg, were divided into three groups according to the fatty acid supplemented to their ration: (i) About 2.8% lauric acid flushing (group); (ii) 2.8% linoleic acid flushing (LA group); and (iii) 2.8% a-linolenic acid flushing (ALA group). The ration was formulated to be isocaloric (total digestible nutrient = 77%) and isonitrogenous (crude protein = 15%). The experiment was conducted for 35 days; that is, 14 days for acclimatization and synchronization of the estrous cycle and 21 days for fatty acid flushing until the appearance of the next estrus. A completely randomized design was applied. Results: According to the results, none of the different fatty acids in the ration affected the nutrient intakes, BCSs, average daily gains, and plasma glucose, cholesterol, and progesterone concentrations of the three groups of does. However, the BCSs (by 0.8-0.9) and the plasma cholesterol concentrations were higher after fatty acid flushing for 21 days than before the flushing period. The ALA group had the highest number of large-sized preovulatory follicles, whereas the LAURIC group had the highest plasma estradiol concentration during estrus. All three groups had similar plasma progesterone concentrations during estrus after fatty acid flushing. Conclusion: Flushing supplementation with 2.8% ALA from flaxseed oil gave the best results in terms of stimulating the highest number of large-sized preovulatory follicles in Ettawa Grade does.


2002 ◽  
Vol 2002 ◽  
pp. 206-206 ◽  
Author(s):  
Z.C.T.R. Daniel ◽  
R.J. Wynn ◽  
A.M. Salter ◽  
P.J. Buttery

Compared to meat from other animals lamb contains high levels of saturated fat, particularly stearic acid which comprises 18% of the total fatty acids (Enser et al, 1996). This stearic acid can be desaturated in the tissue by stearoyl coenzyme A desaturase (SCD) to produce oleic acid. In sheep SCD is produced from a single gene and the levels of SCD mRNA in the tissue correlate well with oleic acid (Ward et al, 1998, Barber et al, 2000) suggesting that an upregulation of SCD activity may increase the relative proportions of unsaturated and saturated fatty acids and so significantly improve the nutritional quality of sheep meat. Our recent studies have shown that insulin increases SCD mRNA levels and monounsaturated fatty acid synthesis in cultured ovine adipose tissue explants (Daniel et al, 2001). The present study was designed to investigate whether feeding a diet believed to manipulate SCD mRNA concentrations would significantly alter the fatty acid composition of lamb.


Biomedicines ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 306 ◽  
Author(s):  
Francesca Oppedisano ◽  
Roberta Macrì ◽  
Micaela Gliozzi ◽  
Vincenzo Musolino ◽  
Cristina Carresi ◽  
...  

Polyunsaturated fatty acids (n-3 PUFAs) are long-chain polyunsaturated fatty acids with 18, 20 or 22 carbon atoms, which have been found able to counteract cardiovascular diseases. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in particular, have been found to produce both vaso- and cardio-protective response via modulation of membrane phospholipids thereby improving cardiac mitochondrial functions and energy production. However, antioxidant properties of n-3 PUFAs, along with their anti-inflammatory effect in both blood vessels and cardiac cells, seem to exert beneficial effects in cardiovascular impairment. In fact, dietary supplementation with n-3 PUFAs has been demonstrated to reduce oxidative stress-related mitochondrial dysfunction and endothelial cell apoptosis, an effect occurring via an increased activity of endogenous antioxidant enzymes. On the other hand, n-3 PUFAs have been shown to counteract the release of pro-inflammatory cytokines in both vascular tissues and in the myocardium, thereby restoring vascular reactivity and myocardial performance. Here we summarize the molecular mechanisms underlying the anti-oxidant and anti-inflammatory effect of n-3 PUFAs in vascular and cardiac tissues and their implication in the prevention and treatment of cardiovascular disease.


2002 ◽  
Vol 87 (6) ◽  
pp. 595-604 ◽  
Author(s):  
Ute Alexy ◽  
Wolfgang Sichert-Hellert ◽  
Mathilde Kersting

The DONALD study (Dortmund Nutritional and Anthropometric Longitudinally Designed study) gives the opportunity to evaluate long-term food and nutrient intake data on the basis of 3 d weighed dietary records of infants, children and adolescents since 1985. In this paper, we examine changes in energy and macronutrient intakes (protein, fat, saturated, mono- and polyunsaturated fatty acids, carbohydrates and added sugars) of 795 2–18-year-old subjects between 1985 and 2000 (4483 records). No significant changes in intakes of energy and of protein, polyunsaturated fatty acids and added sugars (as % energy intake, E %) were found. Fat intake decreased significantly in all age groups (between -0·20 and -0·26 E %/year), as well as intake of saturated fatty acids (between -0·11 and -0·14 E %/year) and monounsaturated fatty acids (between -0·07 and -0·014 E %/year). This decline was compensated for by a significant increase in carbohydrate intake (between +0·18 and +0·27 E %/year). The changes in macronutrient intake were mainly due to a decreased consumption of fats–oils (between -0·29 and -1·26 g/year) and meat–fish–eggs (between -0·21 and -2·92 g/year), whereas consumption of bread–cereals (between +0·12 and +2·42 g/year) and potatoes–pasta–rice (between +0·15 and +2·26 g/year) increased slightly. However, since recommended fat intake and fatty acid composition was not reached at the end of the study period by far, further efforts will be necessary to improve macronutrient composition and to stabilize favourable dietary habits.


2010 ◽  
Vol 299 (6) ◽  
pp. E918-E927 ◽  
Author(s):  
Michael C. Rudolph ◽  
Jenifer Monks ◽  
Valerie Burns ◽  
Meridee Phistry ◽  
Russell Marians ◽  
...  

The lactating mammary gland synthesizes large amounts of triglyceride from fatty acids derived from the blood and from de novo lipogenesis. The latter is significantly increased at parturition and decreased when additional dietary fatty acids become available. To begin to understand the molecular regulation of de novo lipogenesis, we tested the hypothesis that the transcription factor sterol regulatory element binding factor (SREBF)-1c is a primary regulator of this system. Expression of Srebf1c mRNA and six of its known target genes increased ≥2.5-fold at parturition. However, Srebf1c-null mice showed only minor deficiencies in lipid synthesis during lactation, possibly due to compensation by Srebf1a expression. To abrogate the function of both isoforms of Srebf1, we bred mice to obtain a mammary epithelial cell-specific deletion of SREBF cleavage-activating protein (SCAP), the SREBF escort protein. These dams showed a significant lactation deficiency, and expression of mRNA for fatty acid synthase ( Fasn), insulin-induced gene 1 ( Insig1), mitochondrial citrate transporter ( Slc25a1), and stearoyl-CoA desaturase 2 ( Scd2) was reduced threefold or more; however, the mRNA levels of acetyl-CoA carboxylase-1α ( Acaca) and ATP citrate lyase ( Acly) were unchanged. Furthermore, a 46% fat diet significantly decreased de novo fatty acid synthesis and reduced the protein levels of ACACA, ACLY, and FASN significantly, with no change in their mRNA levels. These data lead us to conclude that two modes of regulation exist to control fatty acid synthesis in the mammary gland of the lactating mouse: the well-known SREBF1 system and a novel mechanism that acts at the posttranscriptional level in the presence of SCAP deletion and high-fat feeding to alter enzyme protein.


2005 ◽  
Vol 289 (4) ◽  
pp. E517-E526 ◽  
Author(s):  
Andreas Jakobsson ◽  
Johanna A. Jörgensen ◽  
Anders Jacobsson

The expression of the Elovl3 gene, which belongs to the Elovl gene family coding for microsomal enzymes involved in very long-chain fatty acid (VLCFA) elongation, is dramatically increased in mouse brown adipose tissue upon cold stimulation. In the present study, we show that the cold-induced Elovl3 expression is under the control of peroxisome proliferator-activated receptor-α (PPARα) and that this regulation is part of a fundamental divergence in the regulation of expression for the different members of the Elovl gene family. In cultured brown adipocytes, a mixture of norepinephrine, dexamethasone, and the PPARα ligand Wy-14643, which rendered the adipocytes a high oxidative state, was required for substantial induction of Elovl3 expression, whereas the same treatment suppressed Elovl1 mRNA levels. The nuclear liver X receptor (LXR) has been implicated in the control of fatty acid synthesis and subsequent lipogenic processes in several tissues. This regulation is also exerted in part by sterol regulatory element-binding protein (SREBP-1), which is a target gene of LXR. We found that stimulation of Elovl3 expression was independent of LXR and SREBP-1 activation. In addition, exposure to the LXR agonist TO-901317 increased nuclear abundance of LXR and mature SREBP-1 as well as expression of the elongases Lce and Elovl1 in a lipogenic fashion but repressed Elovl3 expression. A functional consequence of this was seen on the level of esterified saturated fatty acids, such as C22:0, which was coupled to Elovl3 expression. These data demonstrate differential transcriptional regulation and concomitantly different functional roles for fatty acid elongases in lipid metabolism of brown adipocytes, which reflects the metabolic status of the cells.


2011 ◽  
Vol 57 (6) ◽  
pp. 604-614 ◽  
Author(s):  
T.A. Misharina ◽  
E.B. Burlakova ◽  
L.D. Fatkullina ◽  
M.B. Terenina ◽  
N.I. Krikunova ◽  
...  

Age-related alterations of fatty acid composition in liver and brain of AKR mice was investigated. The effect of savory essential oil (Satureja hortensis L.), added with drinking water on fatty acid composition in these organs and the processes of lipid peroxidation in erythrocytes were estimated. It was found that during aging the percentage of saturated fatty acids and polyunsaturated fatty acids decreased while monounsaturated fatty acids increased. The development of leukemia was accompanied by the increase of saturated and polyunsaturated fatty acids percentage and a decrease of monounsaturated fatty acids amount. In the liver aging caused the increase in the percentage of saturated fatty acids, the decrease of monounsaturated fatty acids, while the amount of polyunsaturated fatty acids was not changed. Leukemia (after 8 month) was accompanied by the increase of percentage of monounsaturated fatty acids and the decrease in the amount of oleinic and docosohexaenic acids. The intake of savory essential oil was accompanied by intensification of polyunsaturated fatty acids synthesis in mice liver and reduction of lipid peroxidation products content.


Sign in / Sign up

Export Citation Format

Share Document