scholarly journals Numerical Analysis of the Interactions between Plasma Jet and Powder Particles in PS-PVD Conditions

Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1154
Author(s):  
Tao Zhang ◽  
Gilles Mariaux ◽  
Armelle Vardelle ◽  
Chang-Jiu Li

Plasma spray-physical vapor deposition (PS-PVD) refers to a very low-pressure (~100 Pa) deposition process in which a powder is injected in a high-enthalpy plasma jet, and mostly vaporized and recondensed onto a substrate to form a coating with a specific microstructure (e.g., columnar). A key issue is the selection of the powder particle size that could be evaporated under specific spray conditions. Powder evaporation takes place, first, in the plasma torch between the injection location and nozzle exit and, then, in the deposition chamber from the nozzle exit to the substrate location. This work aims to calculate the size of the particles that can be evaporated in both stages of the process. It deals with an yttria-stabilized zirconia powder and two commercial plasma torches operated at different arc powers with gas mixtures of argon and helium or argon and hydrogen. First, it used computational fluid dynamics simulations to calculate the velocity and temperature fields of the plasma jets under very low-pressure plasma conditions. Then, it estimated the evaporation of the particles injected in both plasma jets assuming an isothermal evaporation process coupled with momentum and heat transfer plasma-particle models in a rarefied plasma. The calculations showed that, for different powers of the Ar–H2 and the Ar–He operating conditions of this study, the heat flux from the plasma jet to particles inside the torch is much higher than that transferred in the deposition chamber while the specific enthalpy transferred to particles is comparable. The argon-helium mixture is more efficient than the argon-hydrogen mixture to evaporate the particles. Particles less than 2 μm in diameter could be fully evaporated in the Ar–He plasma jet while they should be less than 1 µm in diameter in the Ar–H2 plasma jet.

1987 ◽  
Vol 98 ◽  
Author(s):  
Daniel Y.C. Wei ◽  
Bakhtier Farouk ◽  
Diran Apelian

ABSTRACTThe prediction of temperature and fluid flow associated with a d.c. plasma jet exiting from the nozzle has been an important issue for-some years. Modeling efforts have mainly relied on incompressible flow formulations and various turbulence models to predict the d.c. plasma at atmospheric conditions. The primary assumption of such models is that the plasma is in local thermodynamic equilibrium, steady state, and that no other species from the ambient are entrained. In the subsonic parabolic approach, the plasma is treated as a free jet with no downstream influence on the upstream calculations. The elliptic approach needs conditions to bespecified along all boundaries, and calculations are dependent on the extent of the solutiondomain and the exit boundary conditions.Very few attempts have been made to model plasma jets which are supersonic upon exiting the nozzle. The problem is important due to the advantages of low pressure plasma deposition but is complex and difficult to analyze. Specifically one has to acount for compressibility and viscous dissipation effects. Off-design operating conditions (over or underexpanded conditions) greatly influence and complicate the plasma temperature and velocity profiles.


1988 ◽  
Vol 117 ◽  
Author(s):  
R. Hidaka ◽  
T. Ohki ◽  
J. Takeda ◽  
K. Kondo ◽  
H. Kanda ◽  
...  

AbstractIn order to make desirable surface layers by low pressure plasma spraying (LPPS), optimum operating conditions and plasma torch gun designs must be decided upon for understanding LPPS plasma and powder behavior. As the first step of this approach, LPPS plasmas without powders were measured by the Thomson scattering, the Michelson interferometry and a Pitot tube. These diagnostics revealed that LPPS plasma jets may be treated as supersonic neutral gas flows as the first approximation. In addition, the neutral particle temperature Tn and ion temperature Ti were found to be the same as the electron temperature Te, which is 1 eV at an oblique shock wave heating point and 0.2 eV at the sugsequent cooling point. LPPS plasmas and flows were modeled by a computer Simulation of a supersonic nozzle flow, 2nd yielded reasonable understanding of the thermodynamic and fluid-mechanical conditions.


Author(s):  
K. Bobzin ◽  
M. Öte ◽  
M. A. Knoch ◽  
I. Alkhasli ◽  
H. Heinemann

AbstractIn plasma spraying, instabilities and fluctuations of the plasma jet have a significant influence on the particle in-flight temperatures and velocities, thus affecting the coating properties. This work introduces a new method to analyze the stability of plasma jets using high-speed videography. An approach is presented, which digitally examines the images to determine the size of the plasma jet core. By correlating this jet size with the acquisition time, a time-dependent signal of the plasma jet size is generated. In order to evaluate the stability of the plasma jet, this signal is analyzed by calculating its coefficient of variation cv. The method is validated by measuring the known difference in stability between a single-cathode and a cascaded multi-cathode plasma generator. For this purpose, a design of experiment, covering a variety of parameters, is conducted. To identify the cause of the plasma jet fluctuations, the frequency spectra are obtained and subsequently interpreted by means of the fast Fourier transformation. To quantify the significance of the fluctuations on the particle in-flight properties, a new single numerical parameter is introduced. This parameter is based on the fraction of the time-dependent signal of the plasma jet in the relevant frequency range.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 249
Author(s):  
Zhitong Chen ◽  
Richard Obenchain ◽  
Richard E. Wirz

Conventional plasma jets for biomedical applications tend to have several drawbacks, such as high voltages, high gas delivery, large plasma probe volume, and the formation of discharge within the organ. Therefore, it is challenging to employ these jets inside a living organism’s body. Thus, we developed a single-electrode tiny plasma jet and evaluated its use for clinical biomedical applications. We investigated the effect of voltage input and flow rate on the jet length and studied the physical parameters of the plasma jet, including discharge voltage, average gas and subject temperature, and optical emissions via spectroscopy (OES). The interactions between the tiny plasma jet and five subjects (de-ionized (DI) water, metal, cardboard, pork belly, and pork muscle) were studied at distances of 10 mm and 15 mm from the jet nozzle. The results showed that the tiny plasma jet caused no damage or burning of tissues, and the ROS/RNS (reactive oxygen/nitrogen species) intensity increased when the distance was lowered from 15 mm to 10 mm. These initial observations establish the tiny plasma jet device as a potentially useful tool in clinical biomedical applications.


1994 ◽  
Vol 14 (3) ◽  
pp. 251-275 ◽  
Author(s):  
Steven P. Fusselman ◽  
Hirotsugu K. Yasuda

Author(s):  
Christoph Heinz ◽  
Markus Schatz ◽  
Michael V. Casey ◽  
Heinrich Stu¨er

To guarantee a faultless operation of a turbine it is necessary to know the dynamic performance of the machine especially during start-up and shut-down. In this paper the vibration behaviour of a low pressure model steam turbine which has been intentionally mistuned is investigated at the resonance point of an eigenfrequency crossing an engine order. Strain gauge measurements as well as tip timing analysis have been used, whereby a very good agreement is found between the methods. To enhance the interpretation of the data measured, an analytical mass-spring-model, which incorporates degrees of freedom for the blades as well as for the rotor shaft, is presented. The vibration amplitude varies strongly from blade to blade. This is caused by the mistuning parameters and the coupling through the rotor shaft. This circumferential blade amplitude distribution is investigated at different operating conditions. The results show an increasing aerodynamic coupling with increasing fluid density, which becomes visible in a changing circumferential blade amplitude distribution. Furthermore the blade amplitudes rise non-linearly with increasing flow velocity, while the amplitude distribution is almost independent. Additionally, the mechanical and aerodynamic damping parameters are calculated by means of a non-linear regression method. Based on measurements at different density conditions, it is possible to extrapolate the damping parameters down to vacuum conditions, where aerodynamic damping is absent. Hence the material damping parameter can be determined.


2020 ◽  
Vol 15 (7) ◽  
pp. 950-957
Author(s):  
G.D. Mezhetskiy ◽  
◽  
V.A. Strelnikov ◽  

The article presents the results of studies of the thermal fatigue strength of diesel cylinder heads and their resource under operating conditions, by using the most advanced technology for their restoration. Based on the results of theoretical calculations of durability and operational studies, a restoration technology has been proposed, which makes it possible to increase the resource of cylinder heads by 2 ÷ 2.5 times. For this purpose, the non-uniformity of the temperature field on the firing bottom of the cylinder heads of YaMZ-238NB diesel engines was theoretically determined and experimentally confirmed. On the basis of theoretical calculations, the most heatstressed sections of the plane of the cylinder heads of diesel engines bonded to the cylinder block were determined, and the appearance of cracks in them. When developing a method for calculating the temperature fields of the fire bottom, the universal finite element method (FEM) was used. This method makes it possible to take into account the geometry and conditions of thermal loading of the cylinder heads quite accurately. For the determination of temperature fields, a well-founded assignment of the boundary conditions is crucial. With this in mind, a number of surfaces were determined that characterize the durability of the entire part during operation. As a result of calculations carried out on a computer, temperature fields have been obtained that make it possible to analyze the distribution of temperatures and temperature gradients at any point of the fire bottom. The highest temperatures (620...635K) are localized in the central part of the fire bottom, which is two times higher in thermal intensity than the peripheral one and confirms the appearance of cracks in these places during the operation of diesel cylinder heads.


2021 ◽  
Author(s):  
Eva Alvarez-Regueiro ◽  
Esperanza Barrera-Medrano ◽  
Ricardo Martinez-Botas ◽  
Srithar Rajoo

Abstract This paper presents a CFD-based numerical analysis on the potential benefits of non-radial blading turbine for low speed-low pressure applications. Electric turbocompounding is a waste heat recovery technology consisting of a turbine coupled to a generator that transforms the energy left over in the engine exhaust gases, which is typically found at low pressure, into electricity. Turbines designed to operate at low specific speed are ideal for these applications since the peak efficiency occurs at lower pressure ratios than conventional high speed turbines. The baseline design consisted of a vaneless radial fibre turbine, operating at 1.2 pressure ratio and 28,000rpm. Experimental low temperature tests were carried out with the baseline radial blading turbine at nominal, lower and higher pressure ratio operating conditions to validate numerical simulations. The baseline turbine incidence angle effect was studied and positive inlet blade angle impact was assessed in the current paper. Four different turbine rotor designs of 20, 30, 40 and 50° of positive inlet blade angle are presented, with the aim to reduce the losses associated to positive incidence, specially at midspan. The volute domain was included in all CFD calculations to take into account the volute-rotor interactions. The results obtained from numerical simulations of the modified designs were compared with those from the baseline turbine rotor at design and off-design conditions. Total-to-static efficiency improved in all the non-radial blading designs at all operating points considered, by maximum of 1.5% at design conditions and 5% at off-design conditions, particularly at low pressure ratio. As non-radial fibre blading may be susceptible to high centrifugal and thermal stresses, a structural analysis was performed to assess the feasibility of each design. Most of non-radial blading designs showed acceptable levels of stress and deformation.


Author(s):  
Dickson Munyoki ◽  
Markus Schatz ◽  
Damian M. Vogt

The performance of the axial-radial diffuser downstream of the last low-pressure steam turbine stages and the losses occurring subsequently within the exhaust hood directly influences the overall efficiency of a steam power plant. It is estimated that an improvement of the pressure recovery in the diffuser and exhaust hood by 10% translates into 1% of last stage efficiency [11]. While the design of axial-radial diffusers has been the object of quite many studies, the flow phenomena occurring within the exhaust hood have not received much attention in recent years. However, major losses occur due to dissipation within vortices and inability of the hood to properly diffuse the flow. Flow turning from radial to downward flow towards the condenser, especially at the upper part of the hood is essentially the main cause for this. This paper presents a detailed analysis of the losses within the exhaust hood flow for two operating conditions based on numerical results. In order to identify the underlying mechanisms and the locations where dissipation mainly occurs, an approach was followed, whereby the diffuser inflow is divided into different sectors and pressure recovery, dissipation and finally residual kinetic energy of the flow originating from these sectors is calculated at different locations within the hood. Based on this method, the flow from the topmost sectors at the diffuser inlet is found to cause the highest dissipation for both investigated cases. Upon hitting the exhaust hood walls, the flow on the upper part of the diffuser is deflected, forming complex vortices which are stretching into the condenser and interacting with flow originating from other sectors, thereby causing further swirling and generating additional losses. The detailed study of the flow behavior in the exhaust hood and the associated dissipation presents an opportunity for future investigations of efficient geometrical features to be introduced within the hood to improve the flow and hence the overall pressure recovery coefficient.


Sign in / Sign up

Export Citation Format

Share Document